Numerical investigation of multiphase flow effects on mixed convection in partially heated hybrid nanofluid-filled cavity

被引:2
|
作者
Shahid, Muhammad Ashhad [1 ,2 ]
Dayer, Mojtaba [3 ]
Hashim, Ishak [1 ,5 ]
Alsabery, Ammar I. [4 ]
Momani, Shaher [5 ,6 ]
机构
[1] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[2] DHA Suffa Univ, Dept Basic Sci, Karachi 75500, Sindh, Pakistan
[3] Univ Kebangsaan Malaysia, Solar Energy Res Inst, Bangi 43600, Selangor, Malaysia
[4] Islamic Univ, Refrigerat & Air Conditioning Tech Engn Dept, Najaf 540011, Iraq
[5] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, POB 346, Ajman, U Arab Emirates
[6] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
关键词
Hybrid nanofluid; Mixed convection; Multiphase flow; Inner rotating cylinder; Partially heated wall; THERMAL-CONDUCTIVITY; NATURAL-CONVECTION; ROTATING CYLINDER;
D O I
10.1007/s10973-023-12860-4
中图分类号
O414.1 [热力学];
学科分类号
摘要
The integration of cavities designed with distinct specifications enhances the convective heat transfer, leads to improved performance of engineering systems. The current research focuses on numerical investigation of mixed convection within the cavity, which features a partially heated wall and a rotating cylinder. The cavity is filled with hybrid nanofluid comprising Al2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document}O3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{3}$$\end{document} and Cu nanoparticles suspended in water, serving as base fluid. The dimensionless governing equations were derived with a novel transformation of parameters along with consideration of the two-phase Buongiorno model. The input parameters examined included the Rayleigh number (103 <= Ra <= 106\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$10<^>3 \le \text{Ra} \le 10<^>6$$\end{document}), the dimensionless radius of the cylinder (0.1 <= R <= 0.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.1 \le R \le 0.4$$\end{document}), the angular rotational velocity of the cylinder (0 <=omega <= 600\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0 \le \Omega \le 600$$\end{document}), the concentration of nanoparticles (0.02 <=phi <= 0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$0.02 \le \phi \le 0.05$$\end{document}), and the dimensionless length of partially heated wall. Utilizing COMSOL Multiphysics as a simulation platform, Galerkin's Weighted Residual Method is used to solve the governing equations. The impact of varying parameters is analyzed through the visualization of streamlines, dimensionless temperature with isothermal lines, normalized solid volume fraction, and their influence on both local and average Nusselt numbers. The observed results indicate an indirect relationship between average Nusselt number and the length of the partially heated wall. Moreover, the careful consideration of the varying parameters discussed leads to improved heat transfer performance of the hybrid nanofluid in the cavity. The highest value of Nusselt number attained is 8.9456 at phi hnf=0.05\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\phi _{\rm{hnf}}=0. 05$$\end{document}, omega=250\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega =250$$\end{document} and R=0.2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=0.2$$\end{document}, underscoring a notable achievement that surpasses the values reported in previous works. The findings of this study offer valuable implications for optimizing convective heat transfer in applications, such as heat exchangers and electronic cooling systems.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Numerical investigation of magnetic field effects on mixed convection flow in a nanofluid-filled lid-driven cavity
    Rahmannezhad, J.
    Ramezani, A.
    Kalteh, M.
    International Journal of Engineering, Transactions A: Basics, 2013, 26 (10): : 1213 - 1224
  • [2] Mixed convection in a nanofluid-filled sloshing porous cavity including inner heated rose
    Ahmed, Sameh Elsayed
    Aly, Abdelraheem M.
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (01) : 275 - 291
  • [3] Mixed convection in a nanofluid-filled sloshing porous cavity including inner heated rose
    Sameh Elsayed Ahmed
    Abdelraheem M. Aly
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 275 - 291
  • [4] Effect of finite wall thickness on entropy generation and natural convection in a nanofluid-filled partially heated square cavity
    Ishak, Muhamad Safwan
    Alsabery, Ammar I.
    Chamkha, A.
    Hashim, Ishak
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (03) : 1518 - 1546
  • [5] Numerical Investigation into Natural Convection and Entropy Generation in a Nanofluid-Filled U-Shaped Cavity
    Cho, Ching-Chang
    Yau, Her-Terng
    Chiu, Ching-Huang
    Chiu, Kuo-Ching
    ENTROPY, 2015, 17 (09): : 5980 - 5994
  • [6] Numerical simulation of a nanofluid flow in mixed convection inside a heated square cavity
    Hamouche, A.
    Reffis, A.
    Kerkacha, O.
    JOURNAL OF NEW TECHNOLOGY AND MATERIALS, 2019, 8 (03) : 107 - 111
  • [7] Numerical investigation of heat and mass transfer for unsteady multiphase flow in a vented cavity filled with hybrid nanofluid
    Shahid, Muhammad Ashhad
    Dayer, Mojtaba
    Sadiq, Muhammad Adil
    Ali, Haris
    Hashim, Ishak
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 119 : 451 - 464
  • [8] Heat transfer and entropy generation of natural convection in nanofluid-filled square cavity with partially-heated wavy surface
    Cho, Ching-Chang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 77 : 818 - 827
  • [9] RBF simulation of natural convection in a nanofluid-filled cavity
    Geridonmez, Bengisen Pekmen
    AIMS MATHEMATICS, 2016, 1 (03): : 195 - 207
  • [10] Mixed convection in a partially heated triangular cavity filled with nanofluid having a partially flexible wall and internal heat generation
    Selimefendigil, Fatih
    Oztop, Hakan F.
    JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2017, 70 : 168 - 178