Cohomology of congruence subgroups of SL3(Z), Steinberg modules, and real quadratic fields

被引:1
|
作者
Ash, Avner [1 ]
Yasaki, Dan [2 ]
机构
[1] Boston Coll, Chestnut Hill, MA 02467 USA
[2] UNCG, Greensboro, NC 27412 USA
关键词
Arithmetic homology; Steinberg representation; Real quadratic field; Galois cubic field; General linear group; Arithmetic group; FORMS; HOMOLOGY;
D O I
10.1016/j.jnt.2022.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the homology of a congruence subgroup Gamma of SL3(Z) with coefficients in the Steinberg modules St(Q3) and St(E3), where E is a real quadratic field and the coefficients are Q. By Borel-Serre duality, H0(Gamma,St(Q3)) is isomorphic to H3(Gamma, Q). Taking the image of the connecting homomorphism H1(Gamma,St(E3)/St(Q3)) -> H0(Gamma,St(Q3)), followed by the Borel-Serre isomorphism, we obtain a naturally defined Hecke-stable subspace H(Gamma, E) of H3(Gamma, Q). We conjecture that H(Gamma, E) is independent of E and consists of the cuspidal cohomology Husp(Gamma,Q) plus a certain subspace of H3(Gamma, Q) that is isomorphic to the sum of the cuspidal cohomologies of the maximal faces of the Borel-Serre boundary. We report on computer calculations of H(Gamma, E) for various Gamma, E which provide evidence for the conjecture. We give a partial heuristic for the conjecture.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 86
页数:38
相关论文
共 50 条
  • [41] The weights of irreducible SL3(q)-modules in the defining characteristic
    Zavarnitsine, AV
    SIBERIAN MATHEMATICAL JOURNAL, 2004, 45 (02) : 261 - 268
  • [42] The Weights of Irreducible SL3(q)-Modules in the Defining Characteristic
    A. V. Zavarnitsine
    Siberian Mathematical Journal, 2004, 45 : 261 - 268
  • [43] Computation of Z(3)-invariants of real quadratic fields
    Taya, H
    MATHEMATICS OF COMPUTATION, 1996, 65 (214) : 779 - 784
  • [44] New families of irreducible weight modules over sl3
    Futorny, Vyacheslav
    Liu, Genqiang
    Lu, Rencai
    Zhao, Kaiming
    JOURNAL OF ALGEBRA, 2018, 501 : 458 - 472
  • [45] Support varieties of line bundle cohomology groups for SL3(k)
    Hardesty, William D.
    JOURNAL OF ALGEBRA, 2016, 448 : 127 - 173
  • [46] The Polynomial Modules over Quantum Group Uq(sl3)
    Xia, Limeng
    Cai, Qianqian
    Zhang, Jiao
    ALGEBRA COLLOQUIUM, 2022, 29 (04) : 663 - 668
  • [47] On the character of some modular indecomposable tilting modules for SL3
    Jensen, JG
    JOURNAL OF ALGEBRA, 2000, 232 (02) : 397 - 419
  • [48] Derived Reid's recipe for abelian subgroups of SL3(C)
    Cautis, Sabin
    Craw, Alastair
    Logvinenko, Timothy
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2017, 727 : 1 - 48
  • [49] Dihedral congruence primes and class fields of real quadratic fields
    Brown, AF
    Ghate, EP
    JOURNAL OF NUMBER THEORY, 2002, 95 (01) : 14 - 37
  • [50] The cohomology of SL(3,Z[1/2])
    Henn, HW
    K-THEORY, 1999, 16 (04): : 299 - 359