Cohomology of congruence subgroups of SL3(Z), Steinberg modules, and real quadratic fields

被引:1
|
作者
Ash, Avner [1 ]
Yasaki, Dan [2 ]
机构
[1] Boston Coll, Chestnut Hill, MA 02467 USA
[2] UNCG, Greensboro, NC 27412 USA
关键词
Arithmetic homology; Steinberg representation; Real quadratic field; Galois cubic field; General linear group; Arithmetic group; FORMS; HOMOLOGY;
D O I
10.1016/j.jnt.2022.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the homology of a congruence subgroup Gamma of SL3(Z) with coefficients in the Steinberg modules St(Q3) and St(E3), where E is a real quadratic field and the coefficients are Q. By Borel-Serre duality, H0(Gamma,St(Q3)) is isomorphic to H3(Gamma, Q). Taking the image of the connecting homomorphism H1(Gamma,St(E3)/St(Q3)) -> H0(Gamma,St(Q3)), followed by the Borel-Serre isomorphism, we obtain a naturally defined Hecke-stable subspace H(Gamma, E) of H3(Gamma, Q). We conjecture that H(Gamma, E) is independent of E and consists of the cuspidal cohomology Husp(Gamma,Q) plus a certain subspace of H3(Gamma, Q) that is isomorphic to the sum of the cuspidal cohomologies of the maximal faces of the Borel-Serre boundary. We report on computer calculations of H(Gamma, E) for various Gamma, E which provide evidence for the conjecture. We give a partial heuristic for the conjecture.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 86
页数:38
相关论文
共 50 条
  • [31] On basic invariants of some finite subgroups in SL3(C)
    Rudnitskii, Oleg, I
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2023, (81): : 39 - 48
  • [32] CO-HOMOLOGY OF ARITHMETIC SUBGROUPS OF SL3 AT INFINITY
    LEE, R
    SCHWERMER, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1982, 330 : 96 - 131
  • [33] Discrete Subgroups of SL3(R) Generated by Triangular Matrices
    Benoist, Yves
    Oh, Hee
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (04) : 619 - 632
  • [34] On the existence and temperedness of cusp forms for SL3(Z)
    Miller, SD
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 533 : 127 - 169
  • [35] Optimal lifting for the projective action of SL3(Z)
    Kamber, Amitay
    Lavner, Hagai
    ALGEBRA & NUMBER THEORY, 2023, 17 (03) : 749 - 774
  • [36] Steinberg homology, modular forms, and real quadratic fields
    Ash, Avner
    Yasaki, Dan
    JOURNAL OF NUMBER THEORY, 2021, 224 : 323 - 367
  • [37] Spectral Gap for the Cohomological Laplacian of SL3 (Z)
    Kaluba, Marek
    Mizerka, Piotr
    Nowak, Piotr W.
    EXPERIMENTAL MATHEMATICS, 2025, 34 (01) : 53 - 58
  • [38] The 334-triangle graph of SL3(Z)
    Egge, Eric S.
    Polley, Michaela A.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2022, 15 (03): : 537 - 546
  • [39] Small Subgroups of SL(3, Z)
    Long, D. D.
    Reid, A. W.
    EXPERIMENTAL MATHEMATICS, 2011, 20 (04) : 412 - 425
  • [40] Relaxed and logarithmic modules of (sl3)over-cap
    Adamovic, Drazen
    Creutzig, Thomas
    Genra, Naoki
    MATHEMATISCHE ANNALEN, 2024, 389 (01) : 281 - 324