Cohomology of congruence subgroups of SL3(Z), Steinberg modules, and real quadratic fields

被引:1
|
作者
Ash, Avner [1 ]
Yasaki, Dan [2 ]
机构
[1] Boston Coll, Chestnut Hill, MA 02467 USA
[2] UNCG, Greensboro, NC 27412 USA
关键词
Arithmetic homology; Steinberg representation; Real quadratic field; Galois cubic field; General linear group; Arithmetic group; FORMS; HOMOLOGY;
D O I
10.1016/j.jnt.2022.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the homology of a congruence subgroup Gamma of SL3(Z) with coefficients in the Steinberg modules St(Q3) and St(E3), where E is a real quadratic field and the coefficients are Q. By Borel-Serre duality, H0(Gamma,St(Q3)) is isomorphic to H3(Gamma, Q). Taking the image of the connecting homomorphism H1(Gamma,St(E3)/St(Q3)) -> H0(Gamma,St(Q3)), followed by the Borel-Serre isomorphism, we obtain a naturally defined Hecke-stable subspace H(Gamma, E) of H3(Gamma, Q). We conjecture that H(Gamma, E) is independent of E and consists of the cuspidal cohomology Husp(Gamma,Q) plus a certain subspace of H3(Gamma, Q) that is isomorphic to the sum of the cuspidal cohomologies of the maximal faces of the Borel-Serre boundary. We report on computer calculations of H(Gamma, E) for various Gamma, E which provide evidence for the conjecture. We give a partial heuristic for the conjecture.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:49 / 86
页数:38
相关论文
共 50 条
  • [1] COHOMOLOGY OF CONGRUENCE SUBGROUPS OF SL3(Z)
    SCHWERMER, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1976, 283 (11): : 817 - 820
  • [2] A Construction of Rigid Analytic Cohomology Classes for Congruence Subgroups of SL3(Z)
    Pollack, David
    Pollack, Robert
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2009, 61 (03): : 674 - 690
  • [3] COHOMOLOGY OF SL3 (Z)
    SOULE, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (05): : 251 - 254
  • [4] COMPUTATIONS OF CUSPIDAL COHOMOLOGY OF CONGRUENCE SUBGROUPS OF SL(3,Z)
    ASH, A
    GRAYSON, D
    GREEN, P
    JOURNAL OF NUMBER THEORY, 1984, 19 (03) : 412 - 436
  • [5] Cohomology of congruence subgroups of SL(4, Z) II
    Ash, Avner
    Gunnells, Paul E.
    McConnell, Mark
    JOURNAL OF NUMBER THEORY, 2008, 128 (08) : 2263 - 2274
  • [6] Cohomology of congruence subgroups of SL4(Z)
    Ash, A
    Gunnells, PE
    McConnell, M
    JOURNAL OF NUMBER THEORY, 2002, 94 (01) : 181 - 212
  • [7] Boundary and Eisenstein cohomology of SL3(Z)
    Bajpai, Jitendra
    Harder, Guenter
    Horozov, Ivan
    Giusti, Matias Moya
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 199 - 247
  • [8] COHOMOLOGY OF CONGRUENCE SUBGROUPS OF SL4(Z). III
    Ash, Avner
    Gunnells, Paul E.
    McConnell, Mark
    MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1811 - 1831
  • [9] Cohomology of simple modules for sl3 (k) in characteristic 3
    Ibrayeva, A. A.
    Ibraev, Sh Sh
    Yeshmurat, G. K.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 103 (03): : 36 - 43
  • [10] Torsion in the cohomology of congruence subgroups of SL(4, Z) and Galois representations
    Ash, Avner
    Gunnells, Paul E.
    McConnell, Mark
    JOURNAL OF ALGEBRA, 2011, 325 (01) : 404 - 415