Homological invariants of unbounded complexes under Frobenius extensions

被引:0
|
作者
Wu, Dejun [1 ]
Wang, Yongduo [1 ]
机构
[1] Lanzhou Univ Technol, Dept Appl Math, Lanzhou 730050, Peoples R China
关键词
Frobenius extension; Gorenstein flat-cotorsion module; Gorenstein projective dimension; GORENSTEIN FLAT DIMENSION; COVERS;
D O I
10.1080/00927872.2022.2134407
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R subset of S be a Frobenius extension of rings and M an S-complex. It is proven that if the Gorenstein projective (injective) dimension of M as an S-complex is finite, then the Gorenstein projective (injective) dimension of M as an S-complex equals the Gorenstein projective (injective) dimension of M as an R-complex. As a corollary one has that if the projective (injective) dimension of M as an S-complex is finite, then the projective (injective) dimension of M as an S-complex equals the projective (injective) dimension of M as an R-complex. This statement extends a known result of Nakayama and Tsuzuku.
引用
收藏
页码:1298 / 1307
页数:10
相关论文
共 50 条
  • [21] HOMOLOGICAL DIMENSION OF ALGEBRAS OF INVARIANTS
    POPOV, VL
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1983, 341 : 157 - 173
  • [22] HOMOLOGICAL INVARIANTS OF POWERS OF AN IDEAL
    KODIYALAM, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 118 (03) : 757 - 764
  • [23] Frobenius extensions of corings
    Iovanov, Miodrag Cristian
    COMMUNICATIONS IN ALGEBRA, 2008, 36 (03) : 869 - 892
  • [24] Are biseparable extensions Frobenius?
    Caenepeel, S
    Kadison, L
    K-THEORY, 2001, 24 (04): : 361 - 383
  • [25] On certain homological invariants of groups
    Asadollahi, J.
    Bahlekeh, A.
    Hajizamani, A.
    Salarian, Sh
    JOURNAL OF ALGEBRA, 2011, 335 (01) : 18 - 35
  • [26] On cubes of Frobenius extensions
    Elias, Ben
    Snyder, Noah
    Williamson, Geordie
    REPRESENTATION THEORY - CURRENT TRENDS AND PERSPECTIVES, 2017, : 171 - 186
  • [27] Extensions for Frobenius kernels
    Bendel, CP
    Nakano, DK
    Pillen, C
    JOURNAL OF ALGEBRA, 2004, 272 (02) : 476 - 511
  • [28] Homological invariants of stabilizer states
    Wirthmueller, Klaus
    QUANTUM INFORMATION & COMPUTATION, 2008, 8 (6-7) : 595 - 621
  • [29] ARITHMETIC IN FROBENIUS EXTENSIONS
    STECKEL, HD
    MANUSCRIPTA MATHEMATICA, 1982, 39 (2-3) : 359 - 385
  • [30] Homological properties of extensions of algebras
    Iusenko, Kostiantyn
    Macquarrie, John William
    MATHEMATISCHE ZEITSCHRIFT, 2025, 309 (03)