Tensor randomized extended Kaczmarz methods for large inconsistent tensor linear equations with t-product

被引:0
|
作者
Huang, Guang-Xin [1 ]
Zhong, Shuang-You [2 ]
机构
[1] Chengdu Univ Technol, Coll Comp Sci & Cyber Secur, Sichuan Geomath Key Lab, Chengdu 610059, Peoples R China
[2] Chendu Univ Technol, Coll Math & Phys, Sichuan Geomath Key Lab, Chengdu 610059, Peoples R China
关键词
Tensor equations; T-product; Inconsistent; Convergence; BLOCK KACZMARZ; CONSISTENT;
D O I
10.1007/s11075-023-01684-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents three tensor randomized extended Kaczmarz methods for solving a tensor inconsistent linear system of equations under the t-product between tensors. The randomized extended Kaczmarz, the randomized extended block Kaczmarz, and the randomized extended greedy block Kaczmarz methods in tensor form are proposed to solve inconsistent tensor linear system of equations, respectively. The convergence of each method is proved. Several numerical examples are given to show the efficiency and effectiveness of our methods.
引用
收藏
页码:1755 / 1778
页数:24
相关论文
共 50 条
  • [1] The new Krylov subspace methods for solving tensor equations via T-product
    Nobakht-Kooshkghazi, Malihe
    Afshin, Hamidreza
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (08):
  • [2] The new Krylov subspace methods for solving tensor equations via T-product
    Malihe Nobakht-Kooshkghazi
    Hamidreza Afshin
    Computational and Applied Mathematics, 2023, 42
  • [3] Some Systems of Tensor Equations Under T-Product and their Applications
    Yu, Shao-Wen
    Qin, Wei-Lu
    He, Zhuo-Heng
    FILOMAT, 2021, 35 (11) : 3663 - 3677
  • [4] Randomized Kaczmarz for tensor linear systems
    Anna Ma
    Denali Molitor
    BIT Numerical Mathematics, 2022, 62 : 171 - 194
  • [5] A randomized tensor singular value decomposition based on the t-product
    Zhang, Jiani
    Saibaba, Arvind K.
    Kilmer, Misha E.
    Aeron, Shuchin
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [6] Randomized Kaczmarz for tensor linear systems
    Ma, Anna
    Molitor, Denali
    BIT NUMERICAL MATHEMATICS, 2022, 62 (01) : 171 - 194
  • [7] Randomized Kaczmarz methods for tensor complementarity problems
    Wang, Xuezhong
    Che, Maolin
    Wei, Yimin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2022, 82 (03) : 595 - 615
  • [8] Randomized Kaczmarz methods for tensor complementarity problems
    Xuezhong Wang
    Maolin Che
    Yimin Wei
    Computational Optimization and Applications, 2022, 82 : 595 - 615
  • [9] Generalized T-Product Tensor Bernstein Bounds
    Shih Yu Chang
    Yimin Wei
    Annals of Applied Mathematics, 2022, 38 (01) : 25 - 61
  • [10] On some tensor inequalities based on the t-product
    Cao, Zhengbang
    Xie, Pengpeng
    LINEAR & MULTILINEAR ALGEBRA, 2023, 71 (03): : 377 - 390