On some tensor inequalities based on the t-product

被引:3
|
作者
Cao, Zhengbang [1 ]
Xie, Pengpeng [1 ]
机构
[1] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
来源
LINEAR & MULTILINEAR ALGEBRA | 2023年 / 71卷 / 03期
基金
中国国家自然科学基金;
关键词
t-positive semidefiniteness; tensor power; tensor norm inequality; t-eigenvalue; FACTORIZATION;
D O I
10.1080/03081087.2022.2032567
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we investigate the tensor inequalities in the tensor t-product formalism. The inequalities involving tensor power are proved to hold similarly as standard matrix scenarios. We then focus on the tensor norm inequalities. The well-known arithmetic-geometric mean inequality, Holder inequality, and Minkowski inequality are generalized to tensors. Furthermore, we obtain some t-eigenvalue inequalities.
引用
收藏
页码:377 / 390
页数:14
相关论文
共 50 条
  • [1] Some Systems of Tensor Equations Under T-Product and their Applications
    Yu, Shao-Wen
    Qin, Wei-Lu
    He, Zhuo-Heng
    [J]. FILOMAT, 2021, 35 (11) : 3663 - 3677
  • [2] A randomized tensor singular value decomposition based on the t-product
    Zhang, Jiani
    Saibaba, Arvind K.
    Kilmer, Misha E.
    Aeron, Shuchin
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2018, 25 (05)
  • [3] Generalized tensor function via the tensor singular value decomposition based on the T-product
    Miao, Yun
    Qi, Liqun
    Wei, Yimin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 590 : 258 - 303
  • [4] T-product factorization based method for matrix and tensor completion problems
    Quan Yu
    Xinzhen Zhang
    [J]. Computational Optimization and Applications, 2023, 84 : 761 - 788
  • [5] Generalized T-Product Tensor Bernstein Bounds
    Shih Yu Chang
    Yimin Wei
    [J]. Annals of Applied Mathematics, 2022, 38 (01) : 25 - 61
  • [6] T-product factorization based method for matrix and tensor completion problems
    Yu, Quan
    Zhang, Xinzhen
    [J]. COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 84 (03) : 761 - 788
  • [7] Tensor CUR Decomposition under T-Product and Its Perturbation
    Chen, Juefei
    Wei, Yimin
    Xu, Yanwei
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2022, 43 (06) : 698 - 722
  • [8] Computation over t-Product Based Tensor Stiefel Manifold: A Preliminary Study
    Mao, Xian-Peng
    Wang, Ying
    Yang, Yu-Ning
    [J]. JOURNAL OF THE OPERATIONS RESEARCH SOCIETY OF CHINA, 2024,
  • [9] Tensor Completion via A Generalized Transformed Tensor T-Product Decomposition Without t-SVD
    He, Hongjin
    Ling, Chen
    Xie, Wenhui
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (02)
  • [10] Tensor Completion via A Generalized Transformed Tensor T-Product Decomposition Without t-SVD
    Hongjin He
    Chen Ling
    Wenhui Xie
    [J]. Journal of Scientific Computing, 2022, 93