Randomized Kaczmarz for tensor linear systems

被引:0
|
作者
Anna Ma
Denali Molitor
机构
[1] University of California,
[2] Irvine,undefined
[3] University of California,undefined
[4] Los Angeles,undefined
来源
BIT Numerical Mathematics | 2022年 / 62卷
关键词
Multilinear systems; Randomized Kaczmarz; Tensor product; 65F10; 65F20; 65F25; 15A69;
D O I
暂无
中图分类号
学科分类号
摘要
Solving linear systems of equations is a fundamental problem in mathematics. When the linear system is so large that it cannot be loaded into memory at once, iterative methods such as the randomized Kaczmarz method excel. Here, we extend the randomized Kaczmarz method to solve multi-linear (tensor) systems under the tensor–tensor t-product. We present convergence guarantees for tensor randomized Kaczmarz in two ways: using the classical matrix randomized Kaczmarz analysis and taking advantage of the tensor–tensor t-product structure. We demonstrate experimentally that the tensor randomized Kaczmarz method converges faster than traditional randomized Kaczmarz applied to a naively matricized version of the linear system. In addition, we draw connections between the proposed algorithm and a previously known extension of the randomized Kaczmarz algorithm for matrix linear systems.
引用
收藏
页码:171 / 194
页数:23
相关论文
共 50 条
  • [1] Randomized Kaczmarz for tensor linear systems
    Ma, Anna
    Molitor, Denali
    BIT NUMERICAL MATHEMATICS, 2022, 62 (01) : 171 - 194
  • [2] Randomized Average Kaczmarz Algorithm for Tensor Linear Systems
    Bao, Wendi
    Zhang, Feiyu
    Li, Weiguo
    Wang, Qin
    Gao, Ying
    MATHEMATICS, 2022, 10 (23)
  • [3] Randomized Kaczmarz solver for noisy linear systems
    Deanna Needell
    BIT Numerical Mathematics, 2010, 50 : 395 - 403
  • [4] Randomized Kaczmarz solver for noisy linear systems
    Needell, Deanna
    BIT NUMERICAL MATHEMATICS, 2010, 50 (02) : 395 - 403
  • [5] A WEIGHTED RANDOMIZED KACZMARZ METHOD FOR SOLVING LINEAR SYSTEMS
    Steinerberger, Stefan
    MATHEMATICS OF COMPUTATION, 2021, 90 (332) : 2815 - 2826
  • [6] Tensor randomized extended Kaczmarz methods for large inconsistent tensor linear equations with t-product
    Huang, Guang-Xin
    Zhong, Shuang-You
    NUMERICAL ALGORITHMS, 2024, 96 (04) : 1755 - 1778
  • [7] An almost-maximal residual tensor block Kaczmarz method for large tensor linear systems
    Zhong, Shuangyou
    Huang, Guangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 437
  • [8] THE GREEDY RANDOMIZED EXTENDED KACZMARZ ALGORITHM FOR NOISY LINEAR SYSTEMS
    Chen, Na
    Zhu, Deliang
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2023, 13 (02): : 913 - 927
  • [9] Greedy Randomized Kaczmarz Method for Solving Noisy Linear Systems
    Wu W.
    Wu, Wenting (wuwenting@bit.edu.cn), 1600, Science Press (49): : 1466 - 1472
  • [10] A weighted randomized sparse Kaczmarz method for solving linear systems
    Zhang, Lu
    Yuan, Ziyang
    Wang, Hongxia
    Zhang, Hui
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):