FP-IMC: A 28nm All-Digital Configurable Floating-Point In-Memory Computing Macro

被引:3
|
作者
Saikia, Jyotishman [1 ]
Sridharan, Amitesh [1 ]
Yeo, Injune [1 ]
Venkataramanaiah, Shreyas [1 ]
Fan, Deliang [1 ]
Seo, Jae-Sun [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85281 USA
关键词
Digital in-memory computing; floating-point acceleration;
D O I
10.1109/ESSCIRC59616.2023.10268770
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In-memory computing (IMC) provides energy-efficient solutions to deep neural networks (DNN). Most IMC designs for DNNs employ fixed-point precisions. However, floating-point precision is still required for DNN training and complex inference models to maintain high accuracy. There have not been float-point precision based IMC works in the literature where the float-point computation is immersed into the weight memory storage. In this work, we propose a novel floating-point precision IMC macro with a configurable architecture that supports both normal 8-bit floating point (FP8) and 8-bit block floating point (BF8) with a shared exponent. The proposed FP-IMC macro implemented in 28nm CMOS demonstrates 12.1 TOPS/W for FP8 precision and 66.6 TOPS/W for BF8 precision, improving energy-efficiency beyond the state-of-the-art FP IMC macros.
引用
收藏
页码:405 / 408
页数:4
相关论文
共 36 条
  • [21] A 22 nm Floating-Point ReRAM Compute-in-Memory Macro Using Residue-Shared ADC for AI Edge Device
    Hsu, Hung-Hsi
    Wen, Tai-Hao
    Khwa, Win-San
    Huang, Wei-Hsing
    Ke, Zhao-En
    Chin, Yu-Hsiang
    Wen, Hua-Jin
    Chang, Yu-Chen
    Hsu, Wei-Ting
    Lele, Ashwin Sanjay
    Zhang, Bo
    Wu, Ping-Sheng
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Teng, Shih-Hsin
    Chou, Chung-Cheng
    Chih, Yu-Der
    Chang, Tsung-Yung Jonathan
    Chang, Meng-Fan
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2025, 60 (01) : 171 - 183
  • [22] A 28 nm 16 Kb Bit-Scalable Charge-Domain Transpose 6T SRAM In-Memory Computing Macro
    Song, Jiahao
    Tang, Xiyuan
    Qiao, Xin
    Wang, Yuan
    Wang, Runsheng
    Huang, Ru
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (05) : 1835 - 1845
  • [23] A 1.23μJ/Inference, All-Digital Shuffle-Type Group-CNN Accelerator in 28nm CMOS With 85.8 Accuracy on CIFAR-10
    Chen, Long
    Li, Cai
    Wang, Tao
    Qian, Junyi
    Shan, Weiwei
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (01) : 296 - 300
  • [24] A 28nm All-Digital Droop Detection and Mitigation Circuit Using A Shared Dual-Mode Delay Line with 14.8% Vmin Reduction and 42.9% Throughput Gain
    Kang, Minyoung
    Kim, Sunghoon
    Park, Youngmin
    Jeong, Sangsu
    Jeon, Dongsuk
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [25] A 28nm 8Kb Reconfigurable SRAM Computing-In-Memory Macro With Input-Sparsity Optimized DTC for Multi-Mode MAC Operations
    Xiao, Kanglin
    Qiao, Xin
    Cui, Xiaoxin
    Song, Jiahao
    Luo, Haoyang
    Wang, Xin'an
    Wang, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (07) : 3263 - 3267
  • [26] A 28nm 16kb Aggregation and Combination Computing-in-Memory Macro with Dual-level Sparsity Modulation and Sparse-Tracking ADCs for GCNs
    Zhang, Zhaoyang
    Liu, Zhichao
    Liu, Feiran
    Gao, Yinhai
    Ma, Yuchen
    Zhang, Yutong
    Guo, An
    Xiong, Tianzhu
    Chen, Jinwu
    Chen, Xi
    Wang, Bo
    Tang, Yuchen
    Pu, Xingyu
    Wang, Xing
    Yang, Jun
    Si, Xin
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [27] A 28nm 157TOPS/W 446.9Kb/mm2 Compute-In-Memory SRAM Macro with Analog-Digital Hybrid Computing for Deep Neural Network Inference
    Jeong, Sangsu
    Oh, Juyoung
    Jeon, Dongsuk
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [28] 15.5 A 28nm 64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC Operation for AI Edge Chips
    Si, Xin
    Tu, Yung-Ning
    Huang, Wei-Hsing
    Su, Jian-Wei
    Lu, Pei-Jung
    Wang, Jing-Hong
    Liu, Ta-Wei
    Wu, Ssu-Yen
    Liu, Ruhui
    Chou, Yen-Chi
    Zhang, Zhixiao
    Sie, Syuan-Hao
    Wei, Wei-Chen
    Lo, Yun-Chen
    Wen, Tai-Hsing
    Hsu, Tzu-Hsiang
    Chen, Yen-Kai
    Shih, William
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Lien, Nan-Chun
    Shih, Wei-Chiang
    He, Yajuan
    Li, Qiang
    Chang, Meng-Fan
    2020 IEEE INTERNATIONAL SOLID- STATE CIRCUITS CONFERENCE (ISSCC), 2020, : 246 - +
  • [29] STAR-SRAM: 43.06-TFLOPS/W, 1.89-TFLOPS/mm2, 400-Kb/mm2 Floating-Point SRAM-based Digital Computingin-Memory Macro in 28-nm CMOS
    Lin, Chuan-Tung
    Oh, Jonghyun
    Lee, Kevin
    Seok, Mingoo
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [30] A 28nm 32Kb SRAM Computing-in-Memory Macro With Hierarchical Capacity Attenuator and Input Sparsity-Optimized ADC for 4b Mac Operation
    Xiao, Kanglin
    Cui, Xiaoxin
    Qiao, Xin
    Song, Jiahao
    Luo, Haoyang
    Wang, Xin'an
    Wang, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2023, 70 (06) : 1816 - 1820