A 28nm 32Kb SRAM Computing-in-Memory Macro With Hierarchical Capacity Attenuator and Input Sparsity-Optimized ADC for 4b Mac Operation

被引:12
|
作者
Xiao, Kanglin [1 ,2 ]
Cui, Xiaoxin [3 ]
Qiao, Xin [3 ]
Song, Jiahao [3 ]
Luo, Haoyang [4 ]
Wang, Xin'an [1 ,2 ]
Wang, Yuan [3 ]
机构
[1] Peking Univ, MPW Ctr, Sch Integrated Circuits, Key Lab Microelect Devices & Circuits, Beijing 100871, Peoples R China
[2] Peking Univ, Sch ECE, Key Lab Integrated Microsyst, Shenzhen Grad Sch, Shenzhen 518055, Peoples R China
[3] Peking Univ, MPW Ctr, Sch Integrated Circuits, Key Lab Microelect Devices & Circuits, Beijing 100871, Peoples R China
[4] Peking Univ, Inst Artificial Intelligence, Beijing 100871, Peoples R China
关键词
Random access memory; Voltage; Throughput; Energy efficiency; Computer architecture; Capacitors; Attenuators; SRAM; computing-in-memory (CIM); capacitive coupling; hierarchical capacity attenuator; input sparsity;
D O I
10.1109/TCSII.2023.3234620
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Computing-in-memory (CIM) is an emerging approach for alleviating the Von-Neumann bottleneck of latency and energy overheads, and improving energy efficiency and throughput. In this brief, we present a novel CIM macro aimed at improving the energy efficiency and throughput of edge devices when running 4b multiply-and-accumulate (MAC) operations. The proposed architecture uses (1) a customized 9T1C bit-cell in charge-domain computation for sensing margin improvement and compact design; (2) a hierarchical capacity attenuator for 4b weight accumulation without complicated controlling switches and signals for throughput improvement; (3) an input sparsity-sensing-based flash analog-to-digital converters readout scheme to improve energy efficiency and throughput. Fabricated in 28nm CMOS technology, the proposed 32Kb SRAM CIM macro demonstrates an average energy efficiency of 646.6 TOPS/W (normalized to 4b/4b input/weight) and a throughput of 1638.4 GOPS while achieving 84.89% classification accuracy on the CIFAR-10 dataset at 4b precision in inputs and weights.
引用
收藏
页码:1816 / 1820
页数:5
相关论文
共 8 条
  • [1] A 28nm 8Kb Reconfigurable SRAM Computing-In-Memory Macro With Input-Sparsity Optimized DTC for Multi-Mode MAC Operations
    Xiao, Kanglin
    Qiao, Xin
    Cui, Xiaoxin
    Song, Jiahao
    Luo, Haoyang
    Wang, Xin'an
    Wang, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (07) : 3263 - 3267
  • [2] A Computing-in-Memory SRAM Macro Based on Fully-Capacitive-Coupling With Hierarchical Capacity Attenuator for 4-b MAC Operation
    Xiao, Kanglin
    Cui, Xiaoxin
    Qiao, Xin
    Pan, Nanbing
    Wang, Xin'An
    Wang, Yuan
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2551 - 2555
  • [3] A Charge Domain SRAM Computing-in-Memory Macro With Quantized Interval-Optimized ADC and Input Bit-Level Sparsity-Optimized P2O-DAC for 8-b MAC Operation
    Dou, Shukao
    Gu, Zupei
    You, Heng
    Zhan, Yi
    Qiao, Shushan
    Zhou, Yumei
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2024,
  • [4] 15.5 A 28nm 64Kb 6T SRAM Computing-in-Memory Macro with 8b MAC Operation for AI Edge Chips
    Si, Xin
    Tu, Yung-Ning
    Huang, Wei-Hsing
    Su, Jian-Wei
    Lu, Pei-Jung
    Wang, Jing-Hong
    Liu, Ta-Wei
    Wu, Ssu-Yen
    Liu, Ruhui
    Chou, Yen-Chi
    Zhang, Zhixiao
    Sie, Syuan-Hao
    Wei, Wei-Chen
    Lo, Yun-Chen
    Wen, Tai-Hsing
    Hsu, Tzu-Hsiang
    Chen, Yen-Kai
    Shih, William
    Lo, Chung-Chuan
    Liu, Ren-Shuo
    Hsieh, Chih-Cheng
    Tang, Kea-Tiong
    Lien, Nan-Chun
    Shih, Wei-Chiang
    He, Yajuan
    Li, Qiang
    Chang, Meng-Fan
    2020 IEEE INTERNATIONAL SOLID- STATE CIRCUITS CONFERENCE (ISSCC), 2020, : 246 - +
  • [5] A 28nm 64Kb SRAM based Inference-Training Tri-Mode Computing-in-Memory Macro
    Pan, Nanbing
    Cui, Xiaoxin
    Qiao, Xin
    Xiao, Kanglin
    Guo, Qingyu
    Wang, Yuan
    2022 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 22), 2022, : 2561 - 2565
  • [6] OASIS: A 28-nm 32-kb SRAM-Based Computing-in-Memory Design With Output Activation Sparsity Support
    Guo, Qingyu
    Pan, Nanbing
    Qiao, Xin
    Cui, Xiaoxin
    Wang, Yuan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2024, 71 (04) : 1899 - 1903
  • [7] A 28nm 16kb Aggregation and Combination Computing-in-Memory Macro with Dual-level Sparsity Modulation and Sparse-Tracking ADCs for GCNs
    Zhang, Zhaoyang
    Liu, Zhichao
    Liu, Feiran
    Gao, Yinhai
    Ma, Yuchen
    Zhang, Yutong
    Guo, An
    Xiong, Tianzhu
    Chen, Jinwu
    Chen, Xi
    Wang, Bo
    Tang, Yuchen
    Pu, Xingyu
    Wang, Xing
    Yang, Jun
    Si, Xin
    2024 IEEE CUSTOM INTEGRATED CIRCUITS CONFERENCE, CICC, 2024,
  • [8] A 65nm 4Kb Algorithm-Dependent Computing-in-Memory SRAM Unit-Macro with 2.3ns and 55.8TOPS/W Fully Parallel Product-Sum Operation for Binary DNN Edge Processors
    Khwa, Win-San
    Chen, Jia-Jing
    Li, Jia-Fang
    Si, Xin
    Yang, En-Yu
    Sun, Xiaoyu
    Liu, Rui
    Chen, Pai-Yu
    Li, Qiang
    Yu, Shimeng
    Chang, Meng-Fan
    2018 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE - (ISSCC), 2018, : 496 - +