On the number of star-shaped classes in optimal colorings of Kneser graphs

被引:0
|
作者
Daneshpajouh, Hamid Reza [1 ,2 ]
机构
[1] Univ Nottingham Ningbo China, Sch Math Sci, Ningbo, Peoples R China
[2] Univ Nottingham Ningbo China, Sch Math Sci, 199 Taikang East Rd, Ningbo 315100, Peoples R China
关键词
chromatic number; Kneser graph; line graph; CHROMATIC NUMBER; PROOF;
D O I
10.1002/jgt.23032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sets is called star-shaped if all the members of the family have a point in common. The main aim of this paper is to provide a negative answer to the following question raised by Aisenberg et al., for the case k=2 $k=2$. Do there exist (n-2k+2) $(n-2k+2)$-colorings of the (n,k) $(n,k)$-Kneser graphs with more than k-1 $k-1$ many non-star-shaped color classes?
引用
收藏
页码:230 / 238
页数:9
相关论文
共 50 条
  • [41] Star-Shaped Conjugated Systems
    Detert, Heiner
    Lehmann, Matthias
    Meier, Herbert
    MATERIALS, 2010, 3 (05) : 3218 - 3330
  • [42] Star-Shaped Polylactic Acid
    Luo Yufen
    Wang Zhaoyang
    Song Xiumei
    Mao Zhengzhou
    PROGRESS IN CHEMISTRY, 2008, 20 (10) : 1578 - 1587
  • [43] LIMITS OF STAR-SHAPED SETS
    BEER, G
    KLEE, V
    ARCHIV DER MATHEMATIK, 1987, 48 (03) : 241 - 249
  • [44] Electropolymerization of star-shaped oligothiophenes
    Chen, Hsuan-Yin
    Tsai, Jun-Yun
    Yang, Jye-Shane
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 245
  • [45] Modelling with star-shaped distributions
    Liebscher, Eckhard
    Richter, Wolf-Dieter
    DEPENDENCE MODELING, 2020, 8 (01): : 45 - 69
  • [46] Multibranched star-shaped polyethers
    Lapienis, G
    Penczek, S
    MACROMOLECULAR SYMPOSIA, 2003, 195 : 317 - 327
  • [47] Star-shaped separability with applications
    Rubinov, A. M.
    Sharikov, E. V.
    JOURNAL OF CONVEX ANALYSIS, 2006, 13 (3-4) : 849 - 860
  • [48] THE HOYSALA STAR-SHAPED PLAN
    Berkson, Carmel
    MARG-A MAGAZINE OF THE ARTS, 2021, 73 (2-3): : 104 - 105
  • [49] A CHARACTERIZATION OF STAR-SHAPED SETS
    SMITH, CR
    AMERICAN MATHEMATICAL MONTHLY, 1968, 75 (04): : 386 - &
  • [50] On the estimation of a star-shaped set
    Baíllo, A
    Cuevas, A
    ADVANCES IN APPLIED PROBABILITY, 2001, 33 (04) : 717 - 726