On the number of star-shaped classes in optimal colorings of Kneser graphs

被引:0
|
作者
Daneshpajouh, Hamid Reza [1 ,2 ]
机构
[1] Univ Nottingham Ningbo China, Sch Math Sci, Ningbo, Peoples R China
[2] Univ Nottingham Ningbo China, Sch Math Sci, 199 Taikang East Rd, Ningbo 315100, Peoples R China
关键词
chromatic number; Kneser graph; line graph; CHROMATIC NUMBER; PROOF;
D O I
10.1002/jgt.23032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of sets is called star-shaped if all the members of the family have a point in common. The main aim of this paper is to provide a negative answer to the following question raised by Aisenberg et al., for the case k=2 $k=2$. Do there exist (n-2k+2) $(n-2k+2)$-colorings of the (n,k) $(n,k)$-Kneser graphs with more than k-1 $k-1$ many non-star-shaped color classes?
引用
收藏
页码:230 / 238
页数:9
相关论文
共 50 条
  • [21] The Distinguishing Chromatic Number of Kneser Graphs
    Che, Zhongyuan
    Collins, Karen L.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (01):
  • [22] Independence number of products of Kneser graphs
    Bresar, Bostjan
    Valencia-Pabon, Mario
    DISCRETE MATHEMATICS, 2019, 342 (04) : 1017 - 1027
  • [23] ON THE CHROMATIC NUMBER OF GENERALIZED KNESER GRAPHS
    Jafari, Amir
    Alipour, Sharareh
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 69 - 76
  • [24] Bounds on the domination number of Kneser graphs
    Ostergard, Patric R. J.
    Shao, Zehui
    Xu, Xiaodong
    ARS MATHEMATICA CONTEMPORANEA, 2015, 9 (02) : 197 - 205
  • [25] WILD QUOTIENT SURFACE SINGULARITIES WHOSE DUAL GRAPHS ARE NOT STAR-SHAPED
    Ito, Hiroyuki
    Schroeer, Stefan
    ASIAN JOURNAL OF MATHEMATICS, 2015, 19 (05) : 951 - 986
  • [26] GRAPHS WITH LEAST NUMBER OF COLORINGS
    SAKALOGLU, A
    SATYANARAYANA, A
    JOURNAL OF GRAPH THEORY, 1995, 19 (04) : 523 - 533
  • [27] Star-shaped drawings of graphs with fixed embedding and concave corner constraints
    Hong, Seok-Hee
    Nagamochi, Hiroshi
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2008, 5092 : 405 - +
  • [28] Circular chromatic number of Kneser graphs
    Hajiabolhassan, H
    Zhu, X
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2003, 88 (02) : 299 - 303
  • [29] The list distinguishing number of Kneser graphs
    Balachandran, Niranjan
    Padinhatteeri, Sajith
    DISCRETE APPLIED MATHEMATICS, 2018, 236 : 30 - 41
  • [30] Dominator Colorings in Some Classes of Graphs
    Mustapha Chellali
    Frédéric Maffray
    Graphs and Combinatorics, 2012, 28 : 97 - 107