On the generalization of some classes of close-to-convex and typically real functions

被引:0
|
作者
Maiyer, Fedor F. [1 ]
Tastanov, Meyrambek G. [1 ]
Utemissova, Anar A. [1 ]
Baimankulov, Abdykarim T. [1 ]
机构
[1] Kostanay Reg Univ, Kostanay, Kazakhstan
关键词
geometric theory of functions; single-leaf functions; estimates of analytic functions; typically real functions; radii of convexity; BOUNDARY;
D O I
10.17223/19988621/85/1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper introduces a class C(lambda, a, gamma) of functions f(z), analytic in the unit disk E = {z :vertical bar z vertical bar 1}, having a power series expansion of the form f (z) = z + a(2)z(2) + a(3)z(3) +...,, z is an element of E, and satisfying the condition vertical bar[(1- lambda z(2)) f'(z)](1/gamma) - a vertical bar <= a, where 0 <= lambda <= 1, 0 < gamma <= 1, and a > 1/2. It is proved that all functions of class C(lambda, a, gamma) are close-to-convex of the order of gamma. Class C(lambda, a, gamma) generalizes classes of functions with bounded turning Re f'(z)>= 0 (as, a -> +infinity, lambda = 0) and functions f(z) convex in the direction of the imaginary axis Re[(1 - lambda z(2))f'(z)] >= 0 (a -> +infinity, lambda =1 ) and creates a simple parametric passage from one class to another. Based on the subordination method in class C(lambda, a, gamma) and its subclasses, exact estimates are obtained for vertical bar f'(z)vertical bar,vertical bar f(z)vertical bar, vertical bar zf(n)(z) / f'(z) and the exact radii of the convexity. In particular cases, they yield previously known results for functions with bounded turning and functions convex in the direction of the imaginary axis. Using the relationship f (z) is an element of C(lambda, a, gamma) double left right arrow F(z) = zf'(z) is an element of T(lambda, a, gamma), the article introduces the class T(lambda, a, gamma) = {F(z): vertical bar[(1 - lambda z(2))F(z)/z](1/gamma) - a vertical bar <= a}functions generalizing the class of typically real functions and the class of functions satisfying the condition Re[F(z) / z] >= 0. In the class T(lambda, a, gamma) and its subclasses, exact estimates of vertical bar F(z)vertical bar, vertical bar zF'(z) / F(z)vertical bar are found and the exact radii of starlikeness are determined, which generalizes the classical results for typically real functions.
引用
收藏
页码:5 / 21
页数:17
相关论文
共 50 条
  • [21] CLOSE-TO-CONVEX SCHLICHT FUNCTIONS
    KAPLAN, W
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) : 351 - 351
  • [22] On a subclass of close-to-convex functions
    Dash, Prachi Prajna
    Prajapat, Jugal Kishore
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2024, 17 (08)
  • [23] ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    MOGRA, ML
    AHUJA, OP
    REVUE ROUMAINE DE MATHEMATIQUES PURES ET APPLIQUEES, 1982, 27 (08): : 849 - 862
  • [24] ON A SET OF CLOSE-TO-CONVEX FUNCTIONS
    Sharma, Poonam
    Raina, Ravinder Krishna
    Sokol, Janusz
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2018, 55 (02) : 190 - 202
  • [25] Doubly close-to-convex functions
    Dorff, M
    Naraniecka, I
    Szynal, J
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 290 (01) : 55 - 62
  • [26] ON A SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS
    Wang, Zhi-Gang
    Chen, Da-Zhao
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (02): : 95 - 101
  • [27] On Harmonic Close-To-Convex Functions
    Saminathan Ponnusamy
    Anbareeswaran Sairam Kaliraj
    Computational Methods and Function Theory, 2012, 12 : 669 - 685
  • [28] ON CERTAIN CLOSE-TO-CONVEX FUNCTIONS
    Ali, Md Firoz
    Nurezzaman, M. D.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 365 - 375
  • [29] On a subclass of close-to-convex functions
    Kowalczyk, Joanna
    Les-Bomba, Edyta
    APPLIED MATHEMATICS LETTERS, 2010, 23 (10) : 1147 - 1151
  • [30] THE COEFFICIENTS OF CLOSE-TO-CONVEX FUNCTIONS
    READE, MO
    DUKE MATHEMATICAL JOURNAL, 1956, 23 (03) : 459 - 462