Calculus of variations with higher order Caputo fractional derivatives

被引:0
|
作者
Ferreira, Rui A. C. [1 ]
机构
[1] Univ Lisbon, Dept Matemat, Grp Fis Matemat, Fac Ciencias, Ave Prof Gama Pinto 2, P-1649003 Lisbon, Portugal
关键词
49K99; 26A33; SYSTEMS;
D O I
10.1007/s40065-023-00447-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work, we consider fractional variational problems depending on higher order fractional derivatives. We obtain optimality conditions for such problems and we present and discuss some examples. We conclude with possible research directions.
引用
收藏
页码:91 / 101
页数:11
相关论文
共 50 条
  • [21] The Hessian and Jacobi morphisms for higher order calculus of variations
    Francaviglia, M
    Palese, M
    Vitolo, R
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) : 105 - 120
  • [22] The DuBois-Reymond Fundamental Lemma of the Fractional Calculus of Variations and an Euler-Lagrange Equation Involving Only Derivatives of Caputo
    Lazo, Matheus J.
    Torres, Delfim F. M.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2013, 156 (01) : 56 - 67
  • [23] Operational Calculus for the General Fractional Derivatives of Arbitrary Order
    Al-Kandari, Maryam
    Hanna, Latif A-M.
    Luchko, Yuri
    MATHEMATICS, 2022, 10 (09)
  • [24] Modeling and Analysis of the Fractional-Order Flyback Converter in Continuous Conduction Mode by Caputo Fractional Calculus
    Yang, Chen
    Xie, Fan
    Chen, Yanfeng
    Xiao, Wenxun
    Zhang, Bo
    ELECTRONICS, 2020, 9 (09) : 1 - 15
  • [25] An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index
    Razminia, Abolhassan
    Majd, Vahid Johari
    Dizaji, Ahmad Feyz
    NONLINEAR DYNAMICS, 2012, 69 (03) : 1263 - 1284
  • [26] An extended formulation of calculus of variations for incommensurate fractional derivatives with fractional performance index
    Abolhassan Razminia
    Vahid Johari Majd
    Ahmad Feyz Dizaji
    Nonlinear Dynamics, 2012, 69 : 1263 - 1284
  • [27] Fractional calculus of variations
    SpringerBriefs in Applied Sciences and Technology, 2015, 149 : 23 - 30
  • [28] Delsarte equation for Caputo operator of fractional calculus
    Hassan Emamirad
    Arnaud Rougirel
    Fractional Calculus and Applied Analysis, 2022, 25 : 584 - 607
  • [29] Delsarte equation for Caputo operator of fractional calculus
    Emamirad, Hassan
    Rougirel, Arnaud
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 584 - 607
  • [30] FRACTIONAL VECTOR CALCULUS IN THE FRAME OF A GENERALIZED CAPUTO FRACTIONAL DERIVATIVE
    Gambo, Yusuf Ya'u
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2018, 80 (04): : 219 - 228