Delsarte equation for Caputo operator of fractional calculus

被引:0
|
作者
Hassan Emamirad
Arnaud Rougirel
机构
[1] Laboratoire de Mathématiques,
[2] Université de Poitiers,undefined
关键词
Delsarte generalized translation; Fractional derivative in the sense of Caputo; Mittag–Leffler functions; 26A33 (primary); 33E12; 34A08; 34K37; 35R11; 60G22;
D O I
暂无
中图分类号
学科分类号
摘要
A fractional order variant of the Delsarte equation is investigated involving the Caputo differential derivative. Solvability of the resulting fractional hyperbolic Cauchy problem is achieved in the sense of distributions. A regularity result shows that the solution may be a function of time. Rigorous Delsarte representations are established. The symmetry between the fractional operators acting on space and time, induced by the Delsarte equation, opens the door to new type of fractional partial differential equations.
引用
收藏
页码:584 / 607
页数:23
相关论文
共 50 条
  • [1] Delsarte equation for Caputo operator of fractional calculus
    Emamirad, Hassan
    Rougirel, Arnaud
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 584 - 607
  • [2] The Fractional Analysis of a Nonlinear mKdV Equation with Caputo Operator
    Alyousef, Haifa A.
    Shah, Rasool
    Shah, Nehad Ali
    Chung, Jae Dong
    Ismaeel, Sherif M. E.
    El-Tantawy, Samir A.
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [3] Hypercomplex operator calculus for the fractional Helmholtz equation
    Vieira, Nelson
    Ferreira, Milton
    Rodrigues, M. Manuela
    Krausshar, Rolf Soeren
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (14) : 11439 - 11472
  • [4] On nonlinear Sobolev equation with the Caputo fractional operator and exponential nonlinearity
    Binh, Ho Duy
    Huy, Nguyen Dinh
    Nguyen, Anh Tuan
    Can, Nguyen Huu
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (03) : 1492 - 1513
  • [5] SUBCLASSES OF STARLIKE FUNCTIONS ASSOCIATED WITH A FRACTIONAL CALCULUS OPERATOR INVOLVING CAPUTO'S FRACTIONAL DIFFERENTIATION
    Murugusundaramoorthy, G.
    Thilagavathi, K.
    [J]. MATEMATICHE, 2011, 66 (02): : 35 - 47
  • [6] Boundary Value Problem for a Loaded Pseudoparabolic Equation with a Fractional Caputo Operator
    Aitzhanov, Serik
    Bekenayeva, Kymbat
    Abdikalikova, Zamira
    [J]. MATHEMATICS, 2023, 11 (18)
  • [7] Coefficient Estimate of Bi-univalent Functions Involving Caputo Fractional Calculus Operator
    Murugusundaramoorthy, G.
    Thilagavathi, K.
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2014, 38 (03) : 433 - 444
  • [8] N-FRACTIONAL CALCULUS OPERATOR METHOD TO THE EULER EQUATION
    Yilmazer, R.
    Ozturk, O.
    [J]. PROBLEMY ANALIZA-ISSUES OF ANALYSIS, 2018, 7 (02): : 144 - 152
  • [9] ON NABLA DISCRETE FRACTIONAL CALCULUS OPERATOR FOR A MODIFIED BESSEL EQUATION
    Yilmazer, Resat
    Ozturk, Okkes
    [J]. THERMAL SCIENCE, 2018, 22 : S203 - S209
  • [10] On Boundary Value Problems for a Mixed Type Fractional Differential Equation with Caputo Operator
    Yuldashev, T. K.
    Islomov, B. I.
    Ubaydullaev, U. Sh
    [J]. BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 101 (01): : 127 - 137