Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7

被引:14
|
作者
Zhao, Kai [1 ]
Zhao, Lulu [1 ]
Zhao, Yanan [1 ]
Deng, Hanbing [1 ]
机构
[1] Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110866, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
基金
中国国家自然科学基金;
关键词
YOLOv7; seedling maize; detection model; lightweight; attention models;
D O I
10.3390/app13137731
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional maize seedling detection mainly relies on manual observation and experience, which is time-consuming and prone to errors. With the rapid development of deep learning and object-detection technology, we propose a lightweight model LW-YOLOv7 to address the above issues. The new model can be deployed on mobile devices with limited memory and real-time detection of maize seedlings in the field. LW-YOLOv7 is based on YOLOv7 but incorporates GhostNet as the backbone network to reduce parameters. The Convolutional Block Attention Module (CBAM) enhances the network's attention to the target region. In the head of the model, the Path Aggregation Network (PANet) is replaced with a Bi-Directional Feature Pyramid Network (BiFPN) to improve semantic and location information. The SIoU loss function is used during training to enhance bounding box regression speed and detection accuracy. Experimental results reveal that LW-YOLOv7 outperforms YOLOv7 in terms of accuracy and parameter reduction. Compared to other object-detection models like Faster RCNN, YOLOv3, YOLOv4, and YOLOv5l, LW-YOLOv7 demonstrates increased accuracy, reduced parameters, and improved detection speed. The results indicate that LW-YOLOv7 is suitable for real-time object detection of maize seedlings in field environments and provides a practical solution for efficiently counting the number of seedling maize plants.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] GCP-YOLO: a lightweight underwater object detection model based on YOLOv7
    Gao, Yu
    Li, Zhanying
    Zhang, Kangye
    Kong, Lingyan
    Journal of Real-Time Image Processing, 2025, 22 (01)
  • [2] Maize Kernel Quality Detection Based on Improved Lightweight YOLOv7
    Yang, Lili
    Liu, Chengman
    Wang, Changlong
    Wang, Dongwei
    AGRICULTURE-BASEL, 2024, 14 (04):
  • [3] Lightweight Low-Light Object Detection Algorithm Based on YOLOv7
    Li Changyu
    Ge Lei
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (14)
  • [4] A marigold corolla detection model based on the improved YOLOv7 lightweight
    Fan, Yixuan
    Tohti, Gulbahar
    Geni, Mamtimin
    Zhang, Guohui
    Yang, Jiayu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4703 - 4712
  • [5] Research on lightweight pavement disease detection model based on YOLOv7
    Wang C.
    Li J.
    Wang J.
    Zhao W.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 10573 - 10589
  • [6] Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
    Huang, Peile
    Wang, Shenghuai
    Chen, Jianyu
    Li, Weijie
    Peng, Xing
    SENSORS, 2023, 23 (16)
  • [7] Dense Small Object Detection Based on an Improved YOLOv7 Model
    Chen, Xun
    Deng, Linyi
    Hu, Chao
    Xie, Tianyi
    Wang, Chengqi
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [8] A lightweight road crack detection algorithm based on improved YOLOv7 model
    He, Junjie
    Wang, Yanchao
    Wang, Yiting
    Li, Run
    Zhang, Dawei
    Zheng, Zhonglong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 847 - 860
  • [9] Steel surface defect detection based on lightweight YOLOv7
    Tao Shi
    Rongxin Wu
    Wenxu Zhu
    Qingliang Ma
    Optoelectronics Letters, 2025, 21 (5) : 306 - 313
  • [10] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303