Research on lightweight pavement disease detection model based on YOLOv7

被引:0
|
作者
Wang C. [1 ,2 ]
Li J. [1 ]
Wang J. [2 ]
Zhao W. [1 ]
机构
[1] School of Computer Science and Engineering, Anhui University of Science and Technology, Huainan
[2] Jinling Institute of Technology, Nanjing
来源
关键词
BRA; F-ReLU; lightweight; MobilieNetV3; Wise-IoU; Yolov7;
D O I
10.3233/JIFS-239289
中图分类号
U41 [道路工程]; TU997 [];
学科分类号
0814 ;
摘要
Rapid urbanization has made road construction and maintenance imperative, but detecting road diseases has been time-consuming with limited accuracy. To overcome these challenges, we propose an efficient YOLOv7 road disease detection model. Our approach involves integrating MobilieNetV3 as the backbone feature extraction network to reduce the network's parameters and computational requirements. Additionally, we introduce the BRA attention module into the spatial pyramid pooling module to eliminate redundant information and enhance the network's feature representation capability. Moreover, we utilize the F-ReLU activation function in the backbone network, expanding the convolutional layers' receptive field range. To optimize the model's boundary loss, we employ the Wise-IoU loss function, which places more emphasis on the quality of ordinary samples and enhances the overall performance and generalization ability of the network. Experimental results demonstrate that our improved detection algorithm achieves a higher recall rate and mean average precision (mAP) on the public dataset (RDD) and the NJdata dataset in Nanjing's urban area. Specifically, compared to YOLOv7, our model increases the recall rate and mAP on RDD by 3.3% and 2.6%, respectively. On the NJdata dataset, our model improves the recall rate and mAP by 1.9% and 1.3%, respectively. Furthermore, our model reduces parameter and computational requirements by 30% and 22.5%, respectively, striking a balance between detection accuracy and speed. In conclusion, our road disease detection model presents an effective solution to address the challenges associated with road disease detection in urban areas. It offers improved accuracy, efficiency, and generalization capabilities compared to existing models. © 2024 - IOS Press. All rights reserved.
引用
收藏
页码:10573 / 10589
页数:16
相关论文
共 50 条
  • [1] Lightweight Model for Pavement Defect Detection Based on Improved YOLOv7
    Huang, Peile
    Wang, Shenghuai
    Chen, Jianyu
    Li, Weijie
    Peng, Xing
    SENSORS, 2023, 23 (16)
  • [2] Disease Detection of Asphalt Pavement Based on Improved YOLOv7
    Ni, Changshuang
    Li, Lin
    Luo, Wenting
    Qin, Yong
    Yang, Zhen
    Fu, Youhua
    Computer Engineering and Applications, 2023, 59 (13) : 305 - 316
  • [3] A marigold corolla detection model based on the improved YOLOv7 lightweight
    Fan, Yixuan
    Tohti, Gulbahar
    Geni, Mamtimin
    Zhang, Guohui
    Yang, Jiayu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 4703 - 4712
  • [4] Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7
    Zhao, Kai
    Zhao, Lulu
    Zhao, Yanan
    Deng, Hanbing
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [5] A lightweight road crack detection algorithm based on improved YOLOv7 model
    He, Junjie
    Wang, Yanchao
    Wang, Yiting
    Li, Run
    Zhang, Dawei
    Zheng, Zhonglong
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 847 - 860
  • [6] Steel surface defect detection based on lightweight YOLOv7
    Shi, Tao
    Wu, Rongxin
    Zhu, Wenxu
    Ma, Qingliang
    OPTOELECTRONICS LETTERS, 2025, 21 (05) : 306 - 313
  • [7] Lightweight Underwater Target Detection Algorithm Based on YOLOv7
    Xin, Shiao
    Ge, Haibo
    Yuan, Hao
    Yang, Yudi
    Yao, Yang
    Ma, Sai
    2024 6TH INTERNATIONAL CONFERENCE ON NATURAL LANGUAGE PROCESSING, ICNLP 2024, 2024, : 387 - 391
  • [8] A Trash Detection Model Based on YOLOv7
    Liang, Hu
    Xu, Chao
    He, Tao
    PROCEEDINGS OF 2024 INTERNATIONAL CONFERENCE ON COMPUTER AND MULTIMEDIA TECHNOLOGY, ICCMT 2024, 2024, : 300 - 303
  • [9] Steel surface defect detection based on lightweight YOLOv7
    SHI Tao
    WU Rongxin
    ZHU Wenxu
    MA Qingliang
    Optoelectronics Letters, 2025, 21 (05) : 306 - 313
  • [10] GCP-YOLO: a lightweight underwater object detection model based on YOLOv7
    Gao, Yu
    Li, Zhanying
    Zhang, Kangye
    Kong, Lingyan
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (01)