Study on Lightweight Model of Maize Seedling Object Detection Based on YOLOv7

被引:14
|
作者
Zhao, Kai [1 ]
Zhao, Lulu [1 ]
Zhao, Yanan [1 ]
Deng, Hanbing [1 ]
机构
[1] Shenyang Agr Univ, Coll Informat & Elect Engn, Shenyang 110866, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 13期
基金
中国国家自然科学基金;
关键词
YOLOv7; seedling maize; detection model; lightweight; attention models;
D O I
10.3390/app13137731
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Traditional maize seedling detection mainly relies on manual observation and experience, which is time-consuming and prone to errors. With the rapid development of deep learning and object-detection technology, we propose a lightweight model LW-YOLOv7 to address the above issues. The new model can be deployed on mobile devices with limited memory and real-time detection of maize seedlings in the field. LW-YOLOv7 is based on YOLOv7 but incorporates GhostNet as the backbone network to reduce parameters. The Convolutional Block Attention Module (CBAM) enhances the network's attention to the target region. In the head of the model, the Path Aggregation Network (PANet) is replaced with a Bi-Directional Feature Pyramid Network (BiFPN) to improve semantic and location information. The SIoU loss function is used during training to enhance bounding box regression speed and detection accuracy. Experimental results reveal that LW-YOLOv7 outperforms YOLOv7 in terms of accuracy and parameter reduction. Compared to other object-detection models like Faster RCNN, YOLOv3, YOLOv4, and YOLOv5l, LW-YOLOv7 demonstrates increased accuracy, reduced parameters, and improved detection speed. The results indicate that LW-YOLOv7 is suitable for real-time object detection of maize seedlings in field environments and provides a practical solution for efficiently counting the number of seedling maize plants.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Image-Fused-Guided Underwater Object Detection Model Based on Improved YOLOv7
    Wang, Zhenhua
    Zhang, Guangshi
    Luan, Kuifeng
    Yi, Congqin
    Li, Mingjie
    ELECTRONICS, 2023, 12 (19)
  • [32] An Improved YOLOv7 Lightweight Detection Algorithm for Obscured Pedestrians
    Li, Chang
    Wang, Yiding
    Liu, Xiaoming
    SENSORS, 2023, 23 (13)
  • [33] LSDNet: a lightweight ship detection network with improved YOLOv7
    Lang, Cui
    Yu, Xiaoyan
    Rong, Xianwei
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2024, 21 (02)
  • [34] LSDNet: a lightweight ship detection network with improved YOLOv7
    Cui Lang
    Xiaoyan Yu
    Xianwei Rong
    Journal of Real-Time Image Processing, 2024, 21
  • [35] A Multiscale Lightweight and Efficient Model Based on YOLOv7: Applied to Citrus Orchard
    Chen, Junyang
    Liu, Hui
    Zhang, Yating
    Zhang, Daike
    Ouyang, Hongkun
    Chen, Xiaoyan
    PLANTS-BASEL, 2022, 11 (23):
  • [36] A lightweight multi-target ship tracking model based on Yolov7
    Cen, Jian
    Chen, Jia-Hao
    Liu, Xi
    Li, Jia-Xi
    Li, Hai-Sheng
    Huang, Wei-Sheng
    Kang, Jun-Xi
    PHYSICA SCRIPTA, 2024, 99 (03)
  • [37] Automatic Acne Detection Model Based on Improved YOLOv7
    Zhang, Delong
    Jin, Chunyang
    Zhang, Zhidong
    Cao, Xiyuan
    Xue, Chenyang
    IEEE Access, 2024, 12 : 194390 - 194398
  • [38] A Small Object Detection Algorithm for Traffic Signs Based on Improved YOLOv7
    Li, Songjiang
    Wang, Shilong
    Wang, Peng
    SENSORS, 2023, 23 (16)
  • [39] A lightweight YOLOv7 insulator defect detection algorithm based on DSC-SE
    Zhang, Yulu
    Li, Jiazhao
    Fu, Wei
    Ma, Juan
    Wang, Gang
    PLOS ONE, 2023, 18 (12):
  • [40] A Lightweight SAR Image Ship Detection Method Based on Improved Convolution and YOLOv7
    Tang, Hongdou
    Gao, Song
    Li, Song
    Wang, Pengyu
    Liu, Jiqiu
    Wang, Simin
    Qian, Jiang
    REMOTE SENSING, 2024, 16 (03)