The Number of Nonequivalent Monotone Boolean Functions of 8 Variables

被引:1
|
作者
Caric, Marko [1 ]
Zivkovic, Miodrag [2 ]
机构
[1] Natl Bank Serbia, Belgrade 174021, Serbia
[2] Univ Belgrade, Fac Math, Dept Informat, Belgrade 11000, Serbia
关键词
Boolean functions; monotone Boolean functions; Dedekind numbers; number of equivalence classes; integer partitions; EQUIVALENCE CLASSES;
D O I
10.1109/TIT.2022.3214973
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A Boolean function f : {0, 1}(n) bar right arrow {0, 1} is a monotone Boolean function (MBF) of n variables if for each pair of vectors x, y is an element of {0, 1}(n) from x <= y follows f (x) <= f (y). Two MBFs are considered equivalent if one of them can be obtained from the other by permuting the input variables. Let d(n) be the number of MBFs of n variables (which is known as Dedekind number) and let r(n) be a number of non-equivalent MBFs of n variables. The numbers d(n) and r(n) have been so far calculated for n <= 8, and n <= 7, respectively. This paper presents the calculation of r(8) = 1392195548889993358. Determining Dedekind numbers and r(n) is a long-standing problem.
引用
收藏
页码:4027 / 4034
页数:8
相关论文
共 50 条
  • [41] Cryptographic properties of monotone Boolean functions
    Carlet, Claude
    Joyner, David
    Stanica, Pantelimon
    Tang, Deng
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2016, 10 (01) : 1 - 14
  • [42] OPTIMAL RECONSTRUCTION OF MONOTONE BOOLEAN FUNCTIONS
    SOKOLOV, NA
    USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1987, 27 (11-12): : 181 - 187
  • [43] Counting inequivalent monotone Boolean functions
    Stephen, Tamon
    Yusun, Timothy
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 15 - 24
  • [44] Interactive learning of monotone Boolean functions
    Kovalerchuk, B
    Triantaphyllou, E
    Deshpande, AS
    Vityaev, E
    INFORMATION SCIENCES, 1996, 94 (1-4) : 87 - 118
  • [45] On DNF Approximators for Monotone Boolean Functions
    Blais, Eric
    Hastad, Johan
    Servedio, Rocco A.
    Tan, Li-Yang
    AUTOMATA, LANGUAGES, AND PROGRAMMING (ICALP 2014), PT I, 2014, 8572 : 235 - 246
  • [46] THE MONOTONE CIRCUIT COMPLEXITY OF BOOLEAN FUNCTIONS
    ALON, N
    BOPPANA, RB
    COMBINATORICA, 1987, 7 (01) : 1 - 22
  • [47] Mapping Monotone Boolean Functions into Majority
    Testa, Eleonora
    Soeken, Mathias
    Amaru, Luca G.
    Haaswijk, Winston
    De Micheli, Giovanni
    IEEE TRANSACTIONS ON COMPUTERS, 2019, 68 (05) : 791 - 797
  • [48] Monotone Boolean functions capture their primes
    Jean Bourgain
    Journal d'Analyse Mathématique, 2014, 124 : 297 - 307
  • [49] ON THE PLANAR MONOTONE COMPUTATION OF BOOLEAN FUNCTIONS
    BEYNON, M
    BUCKLE, J
    THEORETICAL COMPUTER SCIENCE, 1987, 53 (2-3) : 267 - 279
  • [50] Constructions of resilient rotation symmetric Boolean functions on given number of variables
    Du, Jiao
    Wen, Qiaoyan
    Zhang, Jie
    Pang, Shanqi
    IET INFORMATION SECURITY, 2014, 8 (05) : 265 - 272