On DNF Approximators for Monotone Boolean Functions

被引:0
|
作者
Blais, Eric [1 ]
Hastad, Johan [2 ]
Servedio, Rocco A. [3 ]
Tan, Li-Yang [3 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] KTH Royal Inst Technol, Stockholm, Sweden
[3] Columbia Univ, New York, NY 10027 USA
关键词
CIRCUIT COMPLEXITY; SEPARATION; ALGORITHM; DEPTH;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the complexity of approximating monotone Boolean functions with disjunctive normal form (DNF) formulas, exploring two main directions. First, we construct DNF approximators for arbitrary monotone functions achieving one-sided error: we show that every monotone f can be e-approximated by a DNF g of size 2(n-Omega)(root n) satisfying g(x) <= f(x) for all x is an element of{0, 1}(n). This is the first non-trivial universal upper bound even for DNF approximators incurring two-sided error. Next, we study the power of negations in DNF approximators for monotone functions. We exhibit monotone functions for which non-monotone DNFs perform better than monotone ones, giving separations with respect to both DNF size and width. Our results, when taken together with a classical theorem of Quine [1], highlight an interesting contrast between approximation and exact computation in the DNF complexity of monotone functions, and they add to a line of work on the surprising role of negations in monotone complexity [2,3,4].
引用
收藏
页码:235 / 246
页数:12
相关论文
共 50 条
  • [1] Monotone Boolean functions
    Korshunov, AD
    RUSSIAN MATHEMATICAL SURVEYS, 2003, 58 (05) : 929 - 1001
  • [2] Influences of monotone Boolean functions
    Christofides, Demetres
    DISCRETE MATHEMATICS, 2010, 310 (08) : 1401 - 1402
  • [3] On the nonlinearity of monotone Boolean functions
    Claude Carlet
    Cryptography and Communications, 2018, 10 : 1051 - 1061
  • [4] On the nonlinearity of monotone Boolean functions
    Carlet, Claude
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2018, 10 (06): : 1051 - 1061
  • [5] On learning monotone Boolean functions
    Blum, A
    Burch, C
    Langford, J
    39TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1998, : 408 - 415
  • [6] COMPLEXITY OF MONOTONE BOOLEAN FUNCTIONS
    PIPPENGER, N
    MATHEMATICAL SYSTEMS THEORY, 1978, 11 (04): : 289 - 316
  • [7] Locally monotone Boolean and pseudo-Boolean functions
    Couceiro, Miguel
    Marichal, Jean-Luc
    Waldhauser, Tamas
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (12) : 1651 - 1660
  • [8] Algorithms counting monotone Boolean functions
    Fidytek, R
    Mostowski, AW
    Somla, R
    Szepietowski, A
    INFORMATION PROCESSING LETTERS, 2001, 79 (05) : 203 - 209
  • [9] WALSH SPECTRUM OF MONOTONE BOOLEAN FUNCTIONS
    KEKRE, HB
    SAHASRABUDHE, SC
    RAMARAO, V
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 1981, 23 (03) : 156 - 160
  • [10] ON COUNTING PROBLEM FOR MONOTONE BOOLEAN FUNCTIONS
    SHAPIRO, HN
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (03) : 299 - &