A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons

被引:1
|
作者
Ahmad, Mobin [1 ]
Gazala, Maha Atif [1 ]
Al-Shabrawi, Maha Atif [2 ]
机构
[1] Integral Univ, Dept Math & Stat, Kursi Rd, Lucknow 226026, India
[2] Umm Ul Qura Univ, Dept Math Sci, Mecca, Saudi Arabia
来源
INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS | 2023年 / 21卷
关键词
Lorentzian para-Kenmotsu manifolds; conformal Ricci-Yamabe solitons; Einstein manifolds; -Einstein manifolds;
D O I
10.28924/2291-8639-21-2023-32
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the current note, we study Lorentzian para-Kenmotsu (in brief, LP-Kenmotsu) manifolds admitting conformal Ricci-Yamabe solitons (CRYS) and gradient conformal Ricci-Yamabe soliton (gra-dient CRYS). At last by constructing a 5-dimensional non-trivial example we illustrate our result.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] CONFORMAL η-RICCI-YAMABE SOLITONS ON SUBMANIFOLDS OF AN (LCS )n-MANIFOLD ADMITTING A QUARTER-SYMMETRIC METRIC CONNECTION
    Yadav, Sunil Kumar
    Haseeb, Abdul
    Yildiz, Ahmet
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2024, 73 (03): : 611 - 629
  • [42] Geometry of almost contact metrics as a *-conformal Ricci-Yamabe solitons and related results
    Dey, Santu
    Roy, Soumendu
    Karaca, Fatma
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (09)
  • [43] Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds
    Li, Yanlin
    Ganguly, Dipen
    Dey, Santu
    Bhattacharyya, Arindam
    AIMS MATHEMATICS, 2022, 7 (04): : 5408 - 5430
  • [44] η-Ricci solitons in ε-Kenmotsu manifolds
    Haseeb, Abdul
    De, Uday Chand
    JOURNAL OF GEOMETRY, 2019, 110 (02)
  • [45] RICCI SOLITONS IN KENMOTSU MANIFOLDS
    Nagaraja, H. G.
    Premalatha, C. R.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2012, 3 (02): : 18 - 24
  • [46] Ricci Solitons and Gradient Ricci Solitons in a Kenmotsu Manifolds
    De, Uday Chand
    Matsuyama, Yoshio
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2013, 37 (05) : 691 - 697
  • [47] The Geometry of δ-Ricci-Yamabe Almost Solitons on Para- contact Metric Manifolds
    Mondal, Somnath
    Dey, Santu
    Suh, Young jin
    Bhattacharyya, Arindam
    KYUNGPOOK MATHEMATICAL JOURNAL, 2023, 63 (04): : 623 - 638
  • [48] ?-Ricci-Yamabe Solitons along Riemannian Submersions
    Siddiqi, Mohd Danish
    Mofarreh, Fatemah
    Akyol, Mehmet Akif
    Hakami, Ali H.
    Perez, Juan De Dios
    AXIOMS, 2023, 12 (08)
  • [49] Ricci-Yamabe Solitons in f (R)-gravity
    De, Krishnendu
    De, Uday Chand
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2023, 16 (01): : 334 - 342
  • [50] PARA-SASAKIAN MANIFOLD ADMITTING RICCI-YAMABE SOLITONS WITH QUARTER SYMMETRIC METRIC CONNECTION
    Vandana
    Budhiraja, Rajeev
    Ahmad, Kamran
    Siddiqui, Aliya Naaz
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2024, 39 (03): : 493 - 505