Bezier variant of summation-integral type operators

被引:1
|
作者
Neha [1 ]
Deo, Naokant [1 ]
Pratap, Ram [2 ]
机构
[1] Delhi Technol Univ, Dept Appl Math, Bawana Rd, Delhi 110042, India
[2] Univ Delhi, Dept Math, Miranda House, Delhi 110007, India
关键词
Inverse Polya-Eggenberger distribution; Rate of convergence; Modulus of continuity; Bounded variation; POLYA; APPROXIMATION;
D O I
10.1007/s12215-021-00695-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The motive of this article is to introduce the Bezier variant of a sequence of summation-integral type operators involving inverse Polya-Eggenberger distribution and Paltanea operators [17]. For these operators, we estimate the approximation behaviour including first and second-order modulus of smoothness. Lastly, we establish the rate of convergence with a class of functions of derivatives of bounded variation.
引用
收藏
页码:889 / 900
页数:12
相关论文
共 50 条
  • [31] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [32] Approximation properties of Bezier-summation-integral type operators based on Polya-Bernstein functions
    Agrawal, P. N.
    Ispir, Nurhayat
    Kajla, Arun
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 259 : 533 - 539
  • [33] The Bezier variant of a new type λ-Bernstein operators
    Lian, Bo-yong
    Cai, Qing-bo
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 605 - 609
  • [34] On the Bezier variant of generalized Kantorovich type Balazs operators
    Gupta, V
    Ispir, N
    APPLIED MATHEMATICS LETTERS, 2005, 18 (09) : 1053 - 1061
  • [35] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358
  • [36] Some estimations of summation-integral-type operators
    Mishra, Vishnu Narayan
    Yadav, Rishikesh
    TBILISI MATHEMATICAL JOURNAL, 2018, 11 (03) : 175 - 191
  • [37] APPROXIMATION PROPERTIES OF CERTAIN SUMMATION INTEGRAL TYPE OPERATORS
    Patel, Prashantkumar
    Mishra, Vishnu Narayan
    DEMONSTRATIO MATHEMATICA, 2015, 48 (01) : 77 - 90
  • [38] A note on mixed summation-integral-type operators
    Gupta M.K.
    Kumar M.
    Singh R.P.
    Ukrainian Mathematical Journal, 2007, 59 (8) : 1258 - 1263
  • [39] The Bezier variant of Kantorovitch operators
    Gupta, V
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (2-3) : 227 - 232
  • [40] Quantitative estimations of bivariate summation-integral-type operators
    Yadav, Rishikesh
    Meher, Ramakanta
    Mishraa, Vishnu Narayan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 7172 - 7191