The Bezier variant of Kantorovitch operators

被引:0
|
作者
Gupta, V [1 ]
机构
[1] Netaji Subhas Inst Technol, Sch Appl Sci, New Delhi 110045, India
关键词
rate of convergence; bounded variation; total variation; Baskakov-Kantorovitch operators; Szasz-Kantorovitch operators;
D O I
10.1016/S0898-1221(04)90019-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we define generalized Kantorovitch-type operators, for particular values our operators reduce to the well-known Szasz-Kantorovitch operators and Baskakov-Kantorovitch operators. We estimate the rate of convergence of the Bezier variant of these generalized operators for bounded variation functions. Here we also remark that for a particular value (c = 0) the second central moment was not estimated correctly in [1], which leads to the major error in the main results of [1]. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 232
页数:6
相关论文
共 50 条
  • [1] Bezier variant of modified α-Bernstein operators
    Agrawal, P. N.
    Bhardwaj, Neha
    Bawa, Parveen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2022, 71 (02) : 807 - 827
  • [2] ON THE BEZIER VARIANT OF SRIVASTAVA-GUPTA OPERATORS
    Ispir, Nurhayat
    Yuksel, Ismet
    APPLIED MATHEMATICS E-NOTES, 2005, 5 : 129 - 137
  • [3] The Bezier variant of Kantorovich type λ-Bernstein operators
    Cai, Qing-Bo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [4] Rate of convergence for the Bezier variant of the MKZD operators
    Gupta, Vijay
    Karsli, Harun
    GEORGIAN MATHEMATICAL JOURNAL, 2007, 14 (04) : 651 - 659
  • [5] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [6] The Bezier variant of a new type λ-Bernstein operators
    Lian, Bo-yong
    Cai, Qing-bo
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 605 - 609
  • [7] Rate of approximation for the Bezier variant of Balazs Kantorovich operators
    Gupta, Vijay
    Zeng, X. M.
    MATHEMATICA SLOVACA, 2007, 57 (04) : 349 - 358
  • [8] Pointwise approximation by Bezier variant of integrated MKZ operators
    Zeng, Xiao-Ming
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 823 - 832
  • [9] Bezier variant of summation-integral type operators
    Neha
    Deo, Naokant
    Pratap, Ram
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 889 - 900
  • [10] Rate of simultaneous approximation for the Bezier variant of certain operators
    Gupta, Vijay
    Ivan, Mircea
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) : 392 - 395