Bezier variant of modified α-Bernstein operators

被引:4
|
作者
Agrawal, P. N. [1 ]
Bhardwaj, Neha [2 ]
Bawa, Parveen [2 ]
机构
[1] Indian Inst Technol Roorkee, Dept Math, Roorkee 247667, Uttar Pradesh, India
[2] Amity Univ Uttar Pradesh, Amity Inst Appl Sci, Dept Math, Noida 201303, India
关键词
Bezier operators; Modified alpha-Bernstein operators; Modulus of continuity; Ditizian-Totik modulus of smoothness; Rate of convergence; Bounded variation; Voronovskaja theorerm; APPROXIMATION; CONVERGENCE;
D O I
10.1007/s12215-021-00613-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the present paper, we introduce the Bezier variant of modified alpha-Bernstein operators and study the degree of approximation using second order modulus of continuity. We also establish a direct approximation theorem with the aid of Ditzian-Totik modulus of smoothness and the Peetre's K-functional. Further, we obtain a quantitative Voronovskaja type theorem and the rate of convergence for functions with a derivative of bounded variation on [0, 1]. Finally, we depict the rate of convergence of these operators for certain functions by graphical illustration using Matlab software.
引用
收藏
页码:807 / 827
页数:21
相关论文
共 50 条
  • [1] The Bezier variant of Kantorovich type λ-Bernstein operators
    Cai, Qing-Bo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [2] Bezier variant of the Bernstein–Durrmeyer type operators
    Tuncer Acar
    P. N. Agrawal
    Trapti Neer
    Results in Mathematics, 2017, 72 : 1341 - 1358
  • [3] The Bezier variant of a new type λ-Bernstein operators
    Lian, Bo-yong
    Cai, Qing-bo
    2019 6TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2019), 2019, : 605 - 609
  • [4] Bezier variant of the Bernstein-Durrmeyer type operators
    Acar, Tuncer
    Agrawal, P. N.
    Neer, Trapti
    RESULTS IN MATHEMATICS, 2017, 72 (03) : 1341 - 1358
  • [5] Bezier variant of Bernstein-Durrmeyer blending-type operators
    Prakash, Chandra
    Deo, Naokant
    Verma, D. K.
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (06)
  • [6] Bézier variant of modified α-Bernstein operators
    P. N. Agrawal
    Neha Bhardwaj
    Parveen Bawa
    Rendiconti del Circolo Matematico di Palermo Series 2, 2022, 71 : 807 - 827
  • [7] BEZIER VARIANT OF MODIFIED SRIVASTAVA-GUPTA OPERATORS
    Neer, Trapti
    Ispir, Nurhayat
    Agrawal, Purshottam Narain
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2017, 58 (02): : 199 - 214
  • [8] Approximation by Stancu variant of λ-Bernstein shifted knots operators associated by Bezier basis function
    Alamer, Ahmed
    Nasiruzzaman, Md.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2024, 36 (09)
  • [9] The Bezier variant of Kantorovitch operators
    Gupta, V
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 47 (2-3) : 227 - 232
  • [10] Bezier-Bernstein-Durrmeyer type operators
    Kajla, Arun
    Acar, Tuncer
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 114 (01)