Improving Causality in Interpretable Video Retrieval

被引:0
|
作者
Devi, Varsha [1 ]
Mulhem, Philippe [1 ]
Quenot, Georges [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble, France
关键词
video retrieval; interpretability; causality;
D O I
10.1145/3617233.3617269
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the causal relation between the detection scores of concept (or tag) classifiers and the ranking decisions based on these scores, paving the way for these tags to be used in the visual explanations. We first define a measure for quantifying a causality on a set of tags, typically those involved in visual explanations. We use this measure for evaluating the actual causality in the explanations generated using a recent interpretable video retrieval system (Dong et al. [4]), which we find to be quite low. We then propose and evaluate improvements for significantly increasing this causality without sacrificing the retrieval accuracy of the system.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [1] Improving Video Retrieval by Adaptive Margin
    He, Feng
    Wang, Qi
    Feng, Zhifan
    Jiang, Wenbin
    Lu, Yajuan
    Zhu, Yong
    Tan, Xiao
    SIGIR '21 - PROCEEDINGS OF THE 44TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2021, : 1359 - 1368
  • [2] Improving multimedia retrieval with a video OCR
    Das, Dipanjan
    Chen, Datong
    Hauptmann, Alexander G.
    MULTIMEDIA CONTENT ACCESS: ALGORITHMS AND SYSTEMS II, 2008, 6820
  • [3] Improving video event retrieval by user feedback
    de Boer, Maaike
    Pingen, Geert
    Knook, Douwe
    Schutte, Klamer
    Kraaij, Wessel
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (21) : 22361 - 22381
  • [4] Improving video event retrieval by user feedback
    Maaike de Boer
    Geert Pingen
    Douwe Knook
    Klamer Schutte
    Wessel Kraaij
    Multimedia Tools and Applications, 2017, 76 : 22361 - 22381
  • [5] Causality Inspired Retrieval of Human-object Interactions from Video
    Zhou, Liting
    Liu, Jianquan
    Nishimura, Shoji
    Antony, Joseph
    Gurrin, Cathal
    2019 INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2019,
  • [6] Improving Automatic Video Retrieval with Semantic Concept Detection
    Koskela, Markus
    Sjoberg, Mats
    Laaksonen, Jorma
    IMAGE ANALYSIS, PROCEEDINGS, 2009, 5575 : 480 - 489
  • [7] Improving Video Retrieval Using Multilingual Knowledge Transfer
    Madasu, Avinash
    Aflalo, Estelle
    Stan, Gabriela Ben Melech
    Tseng, Shao-Yen
    Bertasius, Gedas
    Lal, Vasudev
    ADVANCES IN INFORMATION RETRIEVAL, ECIR 2023, PT I, 2023, 13980 : 669 - 684
  • [8] Interpretable Gait Recognition by Granger Causality
    Balazia, Michal
    Hlavackova-Schindler, Katerina
    Sojka, Petr
    Plant, Claudia
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1069 - 1075
  • [9] Interpretable Video Representation
    Diem, Lukas
    Zaharieva, Maia
    2015 13TH INTERNATIONAL WORKSHOP ON CONTENT-BASED MULTIMEDIA INDEXING (CBMI), 2015,
  • [10] Improving Youtube video retrieval by integrating crowdsourced timed metadata
    Pinto, Jose Pedro
    Viana, Paula
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (06) : 7207 - 7221