Improving Causality in Interpretable Video Retrieval

被引:0
|
作者
Devi, Varsha [1 ]
Mulhem, Philippe [1 ]
Quenot, Georges [1 ]
机构
[1] Univ Grenoble Alpes, CNRS, Grenoble INP, LIG, Grenoble, France
关键词
video retrieval; interpretability; causality;
D O I
10.1145/3617233.3617269
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper focuses on the causal relation between the detection scores of concept (or tag) classifiers and the ranking decisions based on these scores, paving the way for these tags to be used in the visual explanations. We first define a measure for quantifying a causality on a set of tags, typically those involved in visual explanations. We use this measure for evaluating the actual causality in the explanations generated using a recent interpretable video retrieval system (Dong et al. [4]), which we find to be quite low. We then propose and evaluate improvements for significantly increasing this causality without sacrificing the retrieval accuracy of the system.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [21] Interpretable Neural Subgraph Matching for Graph Retrieval
    Roy, Indradyumna
    Velugoti, Venkata Sai Baba Reddy
    Chakrabarti, Soumen
    De, Abir
    THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 8115 - 8123
  • [22] IMPROVING RETRIEVAL
    HERRMANN, DJ
    BUSCHKE, H
    GALL, MB
    APPLIED COGNITIVE PSYCHOLOGY, 1987, 1 (01) : 27 - 33
  • [23] Approach for video retrieval by video clip
    Peng, Yu-Xin
    Ngo, Chong-Wah
    Dong, Qing-Jie
    Guo, Zong-Ming
    Xiao, Jian-Guo
    Ruan Jian Xue Bao/Journal of Software, 2003, 14 (08): : 1409 - 1417
  • [24] Video retrieval based on video clip
    Hu, Zhen-Xing
    Xia, Li-Min
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2010, 41 (03): : 1009 - 1014
  • [25] Improving Query and Assessment Quality in Text-Based Interactive Video Retrieval Evaluation
    Bailer, Werner
    Arnold, Rahel
    Benz, Vera
    Coccomini, Davide Alessandro
    Gkagkas, Anastasios
    Gudmundsson, Gylfi Thor
    Heller, Silvan
    Jonsson, Bjorn Thor
    Lokoc, Jakub
    Messina, Nicola
    Pantelidis, Nick
    Wu, Jiaxin
    PROCEEDINGS OF THE 2023 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, ICMR 2023, 2023, : 597 - 601
  • [26] Improving Content Based Video Retrieval Performance by Using Hadoop-MapReduce Model
    Saoudi, El Mehdi
    El Ouadrhiri, Ahderrahmane Adoui
    El Warrak, Othman
    Andaloussi, Said Jai
    Sekkaki, Abderrahim
    PROCEEDINGS OF THE 2018 23RD CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2018, : 329 - 334
  • [27] Learning Perceptual Causality from Video
    Fire, Amy
    Zhu, Song-Chun
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2016, 7 (02)
  • [28] Video retrieval and delivery
    Asai, K.
    Kato, Y.
    Oka, S.
    Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2001, 55 (04):
  • [29] Video composition and retrieval
    Singla, V
    Park, YC
    Panchanathan, S
    Golshani, F
    2000 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, PROCEEDINGS VOLS I-III, 2000, : 1163 - 1166
  • [30] Video retrieval and summarization
    Sebe, N
    Lew, MS
    Smeulders, AWM
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2003, 92 (2-3) : 141 - 146