Improving video event retrieval by user feedback

被引:1
|
作者
de Boer, Maaike [1 ,2 ]
Pingen, Geert [1 ,3 ]
Knook, Douwe [1 ,4 ]
Schutte, Klamer [1 ]
Kraaij, Wessel [5 ,6 ]
机构
[1] TNO, Oude Waalsdorperweg 63, NL-2597 AK The Hague, Netherlands
[2] Radboud Univ Nijmegen, Toernooiveld 200, NL-6525 EC Nijmegen, Netherlands
[3] Univ Twente, Drienerlolaan 5, NL-7522 NB Enschede, Netherlands
[4] Univ Amsterdam, Sci Pk 904, NL-1098 XH Amsterdam, Netherlands
[5] TNO, Anna van Buerenpl 1, NL-2595 DA The Hague, Netherlands
[6] Leiden Univ, Niels Bohrweg 1, NL-2333 Leiden, Netherlands
关键词
Video event retrieval; Relevance feedback; Information retrieval; Semantic space; Rocchio; RELEVANCE FEEDBACK; IMAGE RETRIEVAL; CLASSIFICATION; DESCRIPTORS; RECOGNITION; SCALE;
D O I
10.1007/s11042-017-4798-3
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In content based video retrieval videos are often indexed with semantic labels (concepts) using pre-trained classifiers. These pre-trained classifiers (concept detectors), are not perfect, and thus the labels are noisy. Additionally, the amount of pre-trained classifiers is limited. Often automatic methods cannot represent the query adequately in terms of the concepts available. This problem is also apparent in the retrieval of events, such as bike trick or birthday party. Our solution is to obtain user feedback. This user feedback can be provided on two levels: concept level and video level. We introduce the method Adaptive Relevance Feedback (ARF) on video level feedback. ARF is based on the classical Rocchio relevance feedback method from Information Retrieval. Furthermore, we explore methods on concept level feedback, such as the re-weighting and Query Point Modification (QPM) methods as well as a method that changes the semantic space the concepts are represented in. Methods on both concept level and video level are evaluated on the international benchmark TRECVID Multimedia Event Detection (MED) and compared to state of the art methods. Results show that relevance feedback on both concept and video level improves performance compared to using no relevance feedback; relevance feedback on video level obtains higher performance compared to relevance feedback on concept level; our proposed ARF method on video level outperforms a state of the art k-NN method, all methods on concept level and even manually selected concepts.
引用
收藏
页码:22361 / 22381
页数:21
相关论文
共 50 条
  • [1] Improving video event retrieval by user feedback
    Maaike de Boer
    Geert Pingen
    Douwe Knook
    Klamer Schutte
    Wessel Kraaij
    [J]. Multimedia Tools and Applications, 2017, 76 : 22361 - 22381
  • [2] Utilizing Implicit User Feedback to Improve Interactive Video Retrieval
    Vrochidis, Stefanos
    Kompatsiaris, Ioannis
    Patras, Ioannis
    [J]. ADVANCES IN MULTIMEDIA, 2011, 2011
  • [3] Rocchio-Based Relevance Feedback in Video Event Retrieval
    Pingen, G. L. J.
    de Boer, M. H. T.
    Aly, R. B. N.
    [J]. MULTIMEDIA MODELING, MMM 2017, PT II, 2017, 10133 : 318 - 330
  • [4] VTC: Improving Video-Text Retrieval with User Comments
    Hanu, Laura
    Thewlis, James
    Asano, Yuki M.
    Rupprecht, Christian
    [J]. COMPUTER VISION - ECCV 2022, PT XXXV, 2022, 13695 : 616 - 633
  • [5] PERSONALIZED EVENT-BASED NEWS VIDEO RETRIEVAL WITH DYNAMIC USER-LOG
    Li, Ming
    Zheng, Yantao
    Neo, Shi-Yong
    Wang, Xiangdong
    Tang, Sheng
    Lin, Shou-Xun
    [J]. 2008 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-4, 2008, : 1157 - +
  • [6] Bag of Attributes for Video Event Retrieval
    Duarte, Leonardo A.
    Penatti, Otavio A. B.
    Almeida, Jurandy
    [J]. PROCEEDINGS 2018 31ST SIBGRAPI CONFERENCE ON GRAPHICS, PATTERNS AND IMAGES (SIBGRAPI), 2018, : 447 - 454
  • [7] Automatic relevance feedback for video retrieval
    Muneesawang, P
    Guan, L
    [J]. 2003 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING SIGNAL, PROCESSING EDUCATION, 2003, : 1 - 4
  • [8] Examining feedback in interactive video retrieval
    Albertson, Dan
    [J]. JOURNAL OF INFORMATION SCIENCE, 2012, 38 (06) : 501 - 511
  • [9] Automatic relevance feedback for video retrieval
    Muneesawang, P
    Guan, L
    [J]. 2003 INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL II, PROCEEDINGS, 2003, : 373 - 376
  • [10] IMPROVING RETRIEVAL PERFORMANCE BY RELEVANCE FEEDBACK
    SALTON, G
    BUCKLEY, C
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE, 1990, 41 (04): : 288 - 297