Engineering fine grains, dislocations and precipitates for enhancing the strength of TiB2-modified CoCrFeMnNi high-entropy alloy using laser powder bed fusion

被引:12
|
作者
Chen, Zhao [1 ]
Wen, Xiaoli [1 ]
Wang, Weili [1 ]
Lin, Xin [2 ]
Yang, Haiou [2 ]
Jiang, Ze [3 ,4 ]
Chen, Lianyang [5 ]
Wu, Haibin [1 ]
Li, Wenhui [1 ]
Li, Nan [1 ]
机构
[1] Northwestern Polytech Univ, Sch Phys Sci & Technol, 127 Youyixilu, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Shaanxi, Peoples R China
[3] Lanzhou Univ, Sch Mat & Energy, Electron Microscopy Ctr, Lanzhou 730000, Peoples R China
[4] Lanzhou Univ, Key Lab Magnetism & Magnet Mat, Minist Educ, Lanzhou 730000, Peoples R China
[5] Northwestern Polytech Univ, Sch Aeronaut, 127 Youyixilu, Xian 710072, Shaanxi, Peoples R China
关键词
Laser powder bed fusion; CoCrFeMnNi+TiB2 composite; Microstructures; Mechanical properties; Strengthening mechanisms; MECHANICAL-PROPERTIES; MICROSTRUCTURE EVOLUTION; THERMAL-STABILITY; YIELD STRENGTH; COMPOSITE; PARTICLES; STRAIN; MULTICOMPONENT;
D O I
10.1016/j.jmrt.2023.07.244
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
TiB2 nano-particle reinforced CoCrFeMnNi composite has been additively manufactured by using laser powder bed fusion (LPBF) technique. In comparison with the matrix CoCr-FeMnNi sample, the average grain size of the TiB2 doped CoCrFeMnNi (CoCrFeMnNi + TiB2) sample reduces from 26.27 mm to 7.51 mm, appearing a morphological transformation from columnar grains to fine equiaxed grains and fine dendritic grains. Correspondingly, the compressive yield strength (sy) sharply increases from 484.41 & PLUSMN; 57.81 MPa of CoCrFeMnNi HEA to 952.62 & PLUSMN; 38.15 MPa of CoCrFeMnNi + TiB2, and the tensile yield strength increases from 480.27 & PLUSMN; 1.25 MPa to 834.21 & PLUSMN; 15.93 MPa, revealing a substantial enhancement of mechanical properties. The structural analysis unveils that the CoCrFeMnNi + TiB2 sample formed a tetragonal s phase beside the FCC matrix and TiB2 phases compared with the single FCC phase of CoCrFeMnNi HEA. Especially, atomic resolution scanning transmission electron microscopy discloses that the TiB2 nanoparticles epitaxially grow onto the FCC matrix phase with [01-10]TiB2//[011]FCC orientation relationship. Theoretical calculations indicate that the enhancement mechanism of the CoCrFeMnNi + TiB2 sample should originate from a synergistic strengthening effect which is induced by grain refinement, TiB2 particles, s phases and dislocations. Our work should provide a new view to utilize the rapid solidification process of LPBF and ceramic nano-particle reinforcement for the enhanced mechanical properties of HEAs with great potential. & COPY; 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1198 / 1213
页数:16
相关论文
共 50 条
  • [31] Microstructure and mechanical behavior of additively manufactured CoCrFeMnNi high-entropy alloys: Laser directed energy deposition versus powder bed fusion
    Liu, Yanfang
    Ren, Jie
    Guan, Shuai
    Li, Chenyang
    Zhang, Yin
    Muskeri, Saideep
    Liu, Zhiyuan
    Yu, Dunji
    Chen, Yan
    An, Ke
    Cao, Yang
    Liu, Wei
    Zhu, Yuntian
    Chen, Wei
    Mukherjee, Sundeep
    Zhu, Ting
    Chen, Wen
    ACTA MATERIALIA, 2023, 250
  • [32] Synthesis of Refractory High-Entropy Alloy WTaMoNbV by Powder Bed Fusion Process Using Mixed Elemental Alloying Powder
    Ron, Tomer
    Leon, Avi
    Popov, Vladimir
    Strokin, Evgeny
    Eliezer, Dan
    Shirizly, Amnon
    Aghion, Eli
    MATERIALS, 2022, 15 (12)
  • [33] Overcoming strength-ductility trade-off in CoCrNi medium entropy alloy by forming fine crescent grains in laser powder-bed fusion
    Sun, Haotian
    Luo, Zairan
    Wang, Shuai
    Hashimoto, Naoyuki
    Oka, Hiroshi
    Liu, Qian
    Isobe, Shigehito
    MATERIALS LETTERS, 2023, 347
  • [34] Clarify the role of Nb alloying on passive film and corrosion behavior of CoCrFeMnNi high entropy alloy fabricated by laser powder bed fusion
    Zhang, Zhen
    Li, Xiaofeng
    Yi, Hong
    Xie, Huiqi
    Zhao, Zhanyong
    Bai, Peikang
    CORROSION SCIENCE, 2023, 224
  • [35] In-situ alloyed, oxide-dispersion-strengthened CoCrFeMnNi high entropy alloy fabricated via laser powder bed fusion
    Chen, Peng
    Yang, Chao
    Li, Sheng
    Attallah, Moataz M.
    Yan, Ming
    MATERIALS & DESIGN, 2020, 194
  • [36] Dynamic mechanical properties and shear localization behavior of a NiCrFeCoMo0.2 high-entropy alloy using laser powder bed fusion
    Wu, Qi
    Huang, Yiyu
    Li, Wenshu
    Liu, Bin
    Wang, Bingfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1022
  • [37] Exploring microstructure evolution in CoCrFeNi high-entropy alloy during laser powder bed fusion: A molecular dynamics simulation
    Shi, Yinfeng
    Chen, Hongyu
    Liu, Yang
    Wang, Yonggang
    Kosiba, Konrad
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1022
  • [38] Optimization the cracking and corrosion resistance of MoSi2 coating by addition of TiVAlZrNb high-entropy alloy on laser powder bed fusion high-strength stainless steel
    Wang, Li
    Zhao, Weiguo
    Man, Cheng
    Gao, Lili
    Han, Jiayu
    Hu, Boliang
    Yang, Junzhou
    Hu, Ping
    Wang, Kuaishe
    Dong, Chaofang
    MATERIALS CHARACTERIZATION, 2024, 211
  • [39] Enhanced strength and ductility of laser powder bed fused NbMoTaW refractory high-entropy alloy via carbon microalloying
    Xu, Jintao
    Duan, Ran
    Feng, Kai
    Zhang, Chengcheng
    Zhou, Qingjun
    Liu, Pan
    Li, Zhuguo
    ADDITIVE MANUFACTURING LETTERS, 2022, 3
  • [40] Achieving superior tensile strength of CoCrFeNiTi0.3 high-entropy alloy via in-situ laser powder bed fusion of CoCrFeNi and Ti
    Li, Jingjing
    Ouyang, Di
    Wang, Qihang
    Teng, Qing
    Cai, Chao
    Wei, Qingsong
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 886