Triplet Spatiotemporal Aggregation Network for Video Saliency Detection

被引:1
|
作者
Tan, Zhenshan [1 ]
Chen, Cheng [1 ]
Gu, Xiaodong [1 ]
机构
[1] Fudan Univ, Dept Elect Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
video saliency detection; spatiotemporal aggregation; spatiotemporal interaction; information distribution; multi-level feature aggregation; OPTIMIZATION;
D O I
10.1109/ICME55011.2023.00408
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The effective aggregation of spatiotemporal information to accommodate real-world complex scenes is a fundamental issue in video saliency detection. In this paper, we propose a Triplet Spatiotemporal Aggregation Network (TSAN) to address it from the aggregation of spatiotemporal interaction, spatiotemporal information distribution, and multi-level spatiotemporal features. Firstly, we propose an interactive aggregation gate (IAG) module to model spatial and temporal global context information and perform inter-modal information transfer. Secondly, we employ an information distribution consistency (IDC) module to enhance the consistency of spatiotemporal representation by maximizing the correlation of spatiotemporal high-level features. Finally, we design a multi-level spatiotemporal feature aggregation (MSF) framework to merge cross-level and cross-modal features. These three modules are combined into a unified framework to jointly optimize spatiotemporal information for more precise results. Experimental results on five prevailing datasets show that TSAN outperforms previous competitors.
引用
收藏
页码:2393 / 2398
页数:6
相关论文
共 50 条
  • [31] Video smoke detection based on deep saliency network
    Xu, Gao
    Zhang, Yongming
    Zhang, Qixing
    Lin, Gaohua
    Wang, Zhong
    Jia, Yang
    Wang, Jinjun
    FIRE SAFETY JOURNAL, 2019, 105 : 277 - 285
  • [32] Multi-Scale Spatiotemporal Feature Fusion Network for Video Saliency Prediction
    Zhang, Yunzuo
    Zhang, Tian
    Wu, Cunyu
    Tao, Ran
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 4183 - 4193
  • [33] Video saliency detection via bagging-based prediction and spatiotemporal propagation
    Zhou, Xiaofei
    Liu, Zhi
    Li, Kai
    Sun, Guangling
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 51 : 131 - 143
  • [34] Video Saliency Detection via Graph Clustering With Motion Energy and Spatiotemporal Objectness
    Xu, Mingzhu
    Liu, Bing
    Fu, Ping
    Li, Junbao
    Hu, Yu Hen
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (11) : 2790 - 2805
  • [35] Compressed domain video saliency detection using global and local spatiotemporal features
    Lee, Se-Ho
    Kang, Je-Won
    Kim, Chang-Su
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 35 : 169 - 183
  • [36] Spatiotemporal Saliency Detection Based on Maximum Consistency Superpixels Merging for Video Analysis
    Zhang, Jianhua
    Chen, Jingbo
    Wang, Qichao
    Chen, Shengyong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2020, 16 (01) : 606 - 614
  • [37] Stereoscopic video saliency detection based on spatiotemporal correlation and depth confidence optimization
    Zhang, Ping
    Liu, Jingwen
    Wang, Xiaoyang
    Pu, Tian
    Fei, Chun
    Guo, Zhengkui
    NEUROCOMPUTING, 2020, 377 : 256 - 268
  • [38] Novelty-based Spatiotemporal Saliency Detection for Prediction of Gaze in Egocentric Video
    Polatsek, Patrik
    Benesova, Wanda
    Paletta, Lucas
    Perko, Roland
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (03) : 394 - 398
  • [39] A local spatiotemporal optimization framework for video saliency detection using region covariance
    Tian C.
    Jiang Q.
    Wu Z.
    Liu T.
    Hu L.
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2016, 38 (07): : 1586 - 1593
  • [40] Video Saliency Estimation via Encoding Deep Spatiotemporal Saliency Cues
    Jun Wang
    Chang Tian
    Lei Hu
    Wang Hai
    Zeng Mingyong
    Qing Shen
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,