Triplet Spatiotemporal Aggregation Network for Video Saliency Detection

被引:1
|
作者
Tan, Zhenshan [1 ]
Chen, Cheng [1 ]
Gu, Xiaodong [1 ]
机构
[1] Fudan Univ, Dept Elect Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
video saliency detection; spatiotemporal aggregation; spatiotemporal interaction; information distribution; multi-level feature aggregation; OPTIMIZATION;
D O I
10.1109/ICME55011.2023.00408
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The effective aggregation of spatiotemporal information to accommodate real-world complex scenes is a fundamental issue in video saliency detection. In this paper, we propose a Triplet Spatiotemporal Aggregation Network (TSAN) to address it from the aggregation of spatiotemporal interaction, spatiotemporal information distribution, and multi-level spatiotemporal features. Firstly, we propose an interactive aggregation gate (IAG) module to model spatial and temporal global context information and perform inter-modal information transfer. Secondly, we employ an information distribution consistency (IDC) module to enhance the consistency of spatiotemporal representation by maximizing the correlation of spatiotemporal high-level features. Finally, we design a multi-level spatiotemporal feature aggregation (MSF) framework to merge cross-level and cross-modal features. These three modules are combined into a unified framework to jointly optimize spatiotemporal information for more precise results. Experimental results on five prevailing datasets show that TSAN outperforms previous competitors.
引用
收藏
页码:2393 / 2398
页数:6
相关论文
共 50 条
  • [21] FANet: Feature aggregation network for RGBD saliency detection
    Zhou, Xiaofei
    Wen, Hongfa
    Shi, Ran
    Yin, Haibing
    Zhang, Jiyong
    Yan, Chenggang
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2022, 102
  • [22] A novel deep network and aggregation model for saliency detection
    Liang, Ye
    Liu, Hongzhe
    Ma, Nan
    VISUAL COMPUTER, 2020, 36 (09): : 1883 - 1895
  • [23] GRAPH-THEORETIC SPATIOTEMPORAL CONTEXT MODELING FOR VIDEO SALIENCY DETECTION
    Wei, Lina
    Wang, Fangfang
    Li, Xi
    Wu, Fei
    Xiao, Jun
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4197 - 4201
  • [24] Video Saliency Detection Using Multi-level Spatiotemporal Orientation
    Liu, Zhao
    Wang, Zhenyang
    Song, Xinhui
    Chen, Chun
    2015 10TH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATIONS AND SIGNAL PROCESSING (ICICS), 2015,
  • [25] Unsupervised Uncertainty Estimation Using Spatiotemporal Cues in Video Saliency Detection
    Alshawi, Tariq
    Long, Zhiling
    AlRegib, Ghassan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (06) : 2818 - 2827
  • [26] A spatiotemporal weighted dissimilarity-based method for video saliency detection
    Duan, Lijuan
    Xi, Tao
    Cui, Song
    Qi, Honggang
    Bovik, Alan C.
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2015, 38 : 45 - 56
  • [27] Spatiotemporal Saliency Detection for Video Sequences Based on Random Walk With Restart
    Kim, Hansang
    Kim, Youngbae
    Sim, Jae-Young
    Kim, Chang-Su
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (08) : 2552 - 2564
  • [28] Improving Video Saliency Detection via Localized Estimation and Spatiotemporal Refinement
    Zhou, Xiaofei
    Liu, Zhi
    Gong, Chen
    Liu, Wei
    IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (11) : 2993 - 3007
  • [29] A Spatiotemporal Saliency Model for Video Surveillance
    Tong Yubing
    Cheikh, Faouzi Alaya
    Guraya, Fahad Fazal Elahi
    Konik, Hubert
    Tremeau, Alain
    COGNITIVE COMPUTATION, 2011, 3 (01) : 241 - 263
  • [30] A Spatiotemporal Saliency Model for Video Surveillance
    Tong Yubing
    Faouzi Alaya Cheikh
    Fahad Fazal Elahi Guraya
    Hubert Konik
    Alain Trémeau
    Cognitive Computation, 2011, 3 : 241 - 263