Triplet Spatiotemporal Aggregation Network for Video Saliency Detection

被引:1
|
作者
Tan, Zhenshan [1 ]
Chen, Cheng [1 ]
Gu, Xiaodong [1 ]
机构
[1] Fudan Univ, Dept Elect Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
video saliency detection; spatiotemporal aggregation; spatiotemporal interaction; information distribution; multi-level feature aggregation; OPTIMIZATION;
D O I
10.1109/ICME55011.2023.00408
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The effective aggregation of spatiotemporal information to accommodate real-world complex scenes is a fundamental issue in video saliency detection. In this paper, we propose a Triplet Spatiotemporal Aggregation Network (TSAN) to address it from the aggregation of spatiotemporal interaction, spatiotemporal information distribution, and multi-level spatiotemporal features. Firstly, we propose an interactive aggregation gate (IAG) module to model spatial and temporal global context information and perform inter-modal information transfer. Secondly, we employ an information distribution consistency (IDC) module to enhance the consistency of spatiotemporal representation by maximizing the correlation of spatiotemporal high-level features. Finally, we design a multi-level spatiotemporal feature aggregation (MSF) framework to merge cross-level and cross-modal features. These three modules are combined into a unified framework to jointly optimize spatiotemporal information for more precise results. Experimental results on five prevailing datasets show that TSAN outperforms previous competitors.
引用
收藏
页码:2393 / 2398
页数:6
相关论文
共 50 条
  • [1] A spatiotemporal model for video saliency detection
    Kalboussi, Rahma
    Abdellaoui, Mehrez
    Douik, Ali
    2016 SECOND INTERNATIONAL IMAGE PROCESSING, APPLICATIONS AND SYSTEMS (IPAS), 2016,
  • [2] STI-Net: Spatiotemporal integration network for video saliency detection
    Zhou, Xiaofei
    Cao, Weipeng
    Gao, Hanxiao
    Ming, Zhong
    Zhang, Jiyong
    INFORMATION SCIENCES, 2023, 628 : 134 - 147
  • [3] Video Saliency Detection Using Spatiotemporal Cues
    Chen, Yu
    Xiao, Jing
    Hu, Liuyi
    Chen, Dan
    Wang, Zhongyuan
    Li, Dengshi
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (09): : 2201 - 2208
  • [4] End-to-End Video Saliency Detection via a Deep Contextual Spatiotemporal Network
    Wei, Lina
    Zhao, Shanshan
    Bourahla, Omar Farouk
    Li, Xi
    Wu, Fei
    Zhuang, Yueting
    Han, Junwei
    Xu, Mingliang
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2021, 32 (04) : 1691 - 1702
  • [5] Multi-Scale Spatiotemporal Conv-LSTM Network for Video Saliency Detection
    Tang, Yi
    Zou, Wenbin
    Jin, Zhi
    Li, Xia
    ICMR '18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA RETRIEVAL, 2018, : 362 - 369
  • [6] SPATIOTEMPORAL UTILIZATION OF DEEP FEATURES FOR VIDEO SALIENCY DETECTION
    Le, Trung-Nghia
    Sugimoto, Akihiro
    2017 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2017,
  • [7] A New Method for Spatiotemporal Textual Saliency Detection in Video
    Shan, Susu
    Xu, Hailiang
    Su, Feng
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 3240 - 3245
  • [8] Spatiotemporal Saliency Detection based Video Quality Assessment
    Jia, Changcheng
    Lu, Wen
    He, Lihuo
    He, Ran
    8TH INTERNATIONAL CONFERENCE ON INTERNET MULTIMEDIA COMPUTING AND SERVICE (ICIMCS2016), 2016, : 340 - 343
  • [9] VIDEO SALIENCY DETECTION BASED ON SPATIOTEMPORAL FEATURE LEARNING
    Lee, Se-Ho
    Kim, Jin-Hwan
    Choi, Kwang Pyo
    Sim, Jae-Young
    Kim, Chang-Su
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1120 - 1124
  • [10] Video saliency prediction using enhanced spatiotemporal alignment network
    Chen, Jin
    Song, Huihui
    Zhang, Kaihua
    Liu, Bo
    Liu, Qingshan
    PATTERN RECOGNITION, 2021, 109