Physics guided neural network: Remaining useful life prediction of rolling bearings using long short-term memory network through dynamic weighting of degradation process

被引:11
|
作者
Lu, Wenjian [1 ]
Wang, Yu [1 ]
Zhang, Mingquan [1 ]
Gu, Junwei [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
关键词
Physics guided LSTM (PGLSTM); Remaining useful life (RUL); Physical consistency; Rolling bearings;
D O I
10.1016/j.engappai.2023.107350
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Bearing is a common rotating component, the health status of bearing affects the operation and maintenance of equipment. Thus, the prediction of bearing remaining useful life is of great significance. The remaining useful life prediction based on neural network has black box property, which makes the prediction result may be contrary to the actual physical law. In this paper, a physics guided long short-term memory (LSTM) network is proposed based on the change trend of the time-frequency domain feature indicators of bearings in the process of degradation. Specifically, indexes such as monotonicity are used to select feature indicators that are highly trendy in the process of bearings degradation. On this basis, a regularization term based on the consistent variation of the feature indicators and the remaining useful life (RUL) in the process of bearing degradation is constructed to make the result of the network more consistent with the actual physical law. Meanwhile, the variation of feature indicators is used as dynamic weight to enhance the potential physical consistency. The experimental comparison results show that the prediction results of the network are more accurate and consistent with the actual physical laws with the guidance of physical prior knowledge.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Long short-term memory neural network for glucose prediction
    Jaime Carrillo-Moreno
    Carmen Pérez-Gandía
    Rafael Sendra-Arranz
    Gema García-Sáez
    M. Elena Hernando
    Álvaro Gutiérrez
    Neural Computing and Applications, 2021, 33 : 4191 - 4203
  • [42] Long short-term memory neural network with scoring loss function for aero-engine remaining useful life estimation
    Ren, Li-Hua
    Ye, Zhi-Feng
    Zhao, Yong-Ping
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2023, 237 (03) : 547 - 560
  • [43] Remaining useful lifetime prediction methods of proton exchange membrane fuel cell based on convolutional neural network-long short-term memory and convolutional neural network-bidirectional long short-term memory
    Peng, Yulin
    Chen, Tao
    Xiao, Fei
    Zhang, Shaojie
    FUEL CELLS, 2023, 23 (01) : 75 - 87
  • [44] Hybrid Multi-Scale Convolutional Long Short-Term Memory Network for Remaining Useful Life Prediction and Offset Analysis
    Sharma, Vedant
    Sharma, Deepak
    Anand, Ashish
    JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING, 2023, 23 (04)
  • [45] Remaining useful life prediction of PEMFC based on matrix long short-term memory
    Yi, Fengyan
    Shu, Xing
    Zhou, Jiaming
    Zhang, Jinming
    Feng, Chunxiao
    Gong, Hongtao
    Zhang, Caizhi
    Yu, Wenhao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2025, 111 : 228 - 237
  • [46] A hierarchical scheme for remaining useful life prediction with long short-term memory networks
    Song, Tao
    Liu, Chao
    Wu, Rui
    Jin, Yunfeng
    Jiang, Dongxiang
    NEUROCOMPUTING, 2022, 487 : 22 - 33
  • [47] Remaining Useful Life Estimation Using Long Short-Term Memory Neural Networks and Deep Fusion
    Zhang, Yang
    Hutchinson, Paul
    Lieven, Nicholas A. J.
    Nunez-Yanez, Jose
    IEEE ACCESS, 2020, 8 : 19033 - 19045
  • [48] Cascade Fusion Convolutional Long-Short Time Memory Network for Remaining Useful Life Prediction of Rolling Bearing
    Wu, Qiong
    Zhang, Changsheng
    IEEE ACCESS, 2020, 8 : 32957 - 32965
  • [49] Remaining useful life prediction of bearings by a new reinforced memory GRU network
    Zhou, Jianghong
    Qin, Yi
    Chen, Dingliang
    Liu, Fuqiang
    Qian, Quan
    ADVANCED ENGINEERING INFORMATICS, 2022, 53
  • [50] An improved deep convolution neural network for predicting the remaining useful life of rolling bearings
    Guo, Yiming
    Zhang, Hui
    Xia, Zhijie
    Dong, Chang
    Zhang, Zhisheng
    Zhou, Yifan
    Sun, Han
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2021, 40 (03) : 5743 - 5751