EEG-based cross-subject emotion recognition using multi-source domain transfer learning

被引:13
|
作者
Quan, Jie [1 ]
Li, Ying [1 ,2 ,4 ]
Wang, Lingyue [1 ,2 ]
He, Renjie [3 ]
Yang, Shuo [1 ,2 ]
Guo, Lei [1 ,2 ]
机构
[1] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, Hebei Key Lab Bioelectromagnet & Neural Engn, Tianjin 300131, Peoples R China
[2] Hebei Univ Technol, State Key Lab Reliable & Intelligence Elect Equipm, Tianjin 300131, Peoples R China
[3] MD Anderson Canc Ctr, Dept Radiat Oncol, Houston, TX 77030 USA
[4] Hebei Univ Technol, Sch Hlth Sci & Biomed Engn, Tianjin 300131, CA, Peoples R China
基金
中国国家自然科学基金;
关键词
Emotion recognition; Electroencephalograph (EEG); Multi-source transfer learning; Domain adaptation; CONVERGENCE; NETWORK; MODELS;
D O I
10.1016/j.bspc.2023.104741
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Emotion recognition based on electroencephalogram (EEG) has received extensive attention due to its advantages of being objective and not being controlled by subjective consciousness. However, inter-individual differences lead to insufficient generalization of the model on cross-subject recognition tasks. To solve this problem, a cross-subject emotional EEG classification algorithm based on multi-source domain selection and subdomain adaptation is proposed in this paper. We firstly design a multi-representation variational autoencoder (MR-VAE) to automatically extract emotion related features from multi-channel EEG to obtain a consistent EEG representation with as little prior knowledge as possible. Then, a multi-source domain selection algorithm is proposed to select the existing subjects' EEG data that is closest to the target data distribution in the global distribution and sub-domain distribution, thereby improving the performance of the transfer learning model on the target subject. In this paper, we use a small amount of annotated target data to achieve knowledge transfer and improve the classification accuracy of the model on the target subject as much as possible, which has certain significance in clinical research. The proposed method achieves an average classification accuracy of 92.83% and 79.30% in our experiment on two public datasets SEED and SEED-IV, respectively, which are 26.37% and 22.80% higher than the baseline non-transfer learning method, respectively. Furthermore, we validate the proposed method on other two commonly used public datasets DEAP and DREAMER, which establish SOTA results on the binary classification task of the DEAP dataset. It also achieves comparable accuracy to several transfer learning based methods on the DREAMER dataset. The detailed recognition results on DEAP and DREAMER are in Appendix.
引用
下载
收藏
页数:15
相关论文
共 50 条
  • [31] Cross-subject emotion EEG signal recognition based on source microstate analysis
    Zhang, Lei
    Xiao, Di
    Guo, Xiaojing
    Li, Fan
    Liang, Wen
    Zhou, Bangyan
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [32] Cross-Subject EEG-Based Emotion Recognition Through Neural Networks With Stratified Normalization
    Fdez, Javier
    Guttenberg, Nicholas
    Witkowski, Olaf
    Pasquali, Antoine
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [33] Enhanced Subspace Alignment with Clustering and Weighting for Cross-Subject Multi-Session EEG-based Emotion Recognition
    Shirkarami, Mohsen
    Mohammadzade, Hoda
    2023 30TH NATIONAL AND 8TH INTERNATIONAL IRANIAN CONFERENCE ON BIOMEDICAL ENGINEERING, ICBME, 2023, : 104 - 109
  • [34] Semi-supervised multi-source transfer learning for cross-subject EEG motor imagery classification
    Zhang, Fan
    Wu, Hanliang
    Guo, Yuxin
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (06) : 1655 - 1672
  • [35] Semi-supervised multi-source transfer learning for cross-subject EEG motor imagery classification
    Fan Zhang
    Hanliang Wu
    Yuxin Guo
    Medical & Biological Engineering & Computing, 2024, 62 : 1655 - 1672
  • [36] Cross-Subject Channel Selection Using Modified Relief and Simplified CNN-Based Deep Learning for EEG-Based Emotion Recognition
    Farokhah, Lia
    Sarno, Riyanarto
    Fatichah, Chastine
    IEEE ACCESS, 2023, 11 : 110136 - 110150
  • [37] Personal-Zscore: Eliminating Individual Difference for EEG-Based Cross-Subject Emotion Recognition
    Chen, Huayu
    Sun, Shuting
    Li, Jianxiu
    Yu, Ruilan
    Li, Nan
    Li, Xiaowei
    Hu, Bin
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (03) : 2077 - 2088
  • [38] Cross-Subject EEG-Based Emotion Recognition via Semisupervised Multisource Joint Distribution Adaptation
    Jimenez-Guarneros, Magdiel
    Fuentes-Pineda, Gibran
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [39] Multi-source domain generalization and adaptation toward cross-subject myoelectric pattern recognition
    Zhang, Xuan
    Wu, Le
    Zhang, Xu
    Chen, Xiang
    Li, Chang
    Chen, Xun
    JOURNAL OF NEURAL ENGINEERING, 2023, 20 (01)
  • [40] Joint EEG Feature Transfer and Semisupervised Cross-Subject Emotion Recognition
    Peng, Yong
    Liu, Honggang
    Kong, Wanzeng
    Nie, Feiping
    Lu, Bao-Liang
    Cichocki, Andrzej
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8104 - 8115