2D Mesoporous Naphthalene-Based Conductive Heteroarchitectures toward Long-Life, High-Capacity Zinc-Iodine Batteries

被引:23
|
作者
Wei, Facai [1 ]
Zhang, Tingting [1 ]
Xu, Hengyue [2 ]
Peng, Yonghui [3 ]
Guo, Haitao [3 ]
Wang, Yuexi [3 ]
Guan, Shaojian [3 ]
Fu, Jianwei [4 ]
Jing, Chengbin [1 ]
Cheng, Jiangong [5 ]
Liu, Shaohua [1 ]
机构
[1] East China Normal Univ, Engn Res Ctr Nanophoton & Adv Instrument, Sch Phys & Elect Sci, State Key Lab Precis Spect,Minist Educ, Shanghai 200241, Peoples R China
[2] Tsinghua Univ, Inst Biopharmaceut & Hlth Engn, Tsinghua Shenzhen Int Grad Sch, Shenzhen 518055, Peoples R China
[3] Chanhigh Holdings Ltd Ningbo, Cang Hai Ind Bldg,3388 Cang Hai Rd, Ningbo 315100, Zhejiang, Peoples R China
[4] Zhengzhou Univ, Sch Mat Sci & Engn, 75 Daxue Rd, Zhengzhou 450052, Peoples R China
[5] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, State Key Lab Transducer Technol, Shanghai 200050, Peoples R China
关键词
2D; aqueous zinc-iodine batteries; heteroarchitectures; mesoporous polymers; self-assemblies; PERFORMANCE; GRAPHENE; ION;
D O I
10.1002/adfm.202310693
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nowadays, rechargeable aqueous zinc-iodine batteries have attracted extensive attention due to their low cost, high safety, and high theoretical capacity. However, the poor electrical conductivity of iodine and the shuttling effect of soluble polyiodide ions impose an insurmountable constraint on their performance. Here, a facile soft-hard-templated co-assembly strategy is proposed to fabricate naphthalene-based heteroarchitectured conductive nanosheets with ordered mesopore arrays (approximate to 10 nm), uniform thickness (24.5 nm), high specific surface area (221.5 m2 g-1), and good electronic conductivity (3.9 x 10-3 S cm-1). Density function theory calculation and systematic experimental results show that the complementary combination of the 2D polar semiconducting polymer chains and conductive carbon framework enables the highly efficient immobilization of iodine and then constrains their shuttling effect through strong physicochemical interactions. Accordingly, the resultant zinc-iodine batteries deliver a high specific capacity of 271.4 mAh g-1, excellent rate capability, and impressive long-term cycling stability (35 000 cycles at a high current density of 10 A g-1), superior to most of the previous reports. This study opens new venues for rationally constructing heteroarchitectured porous materials for energy storage applications. New heteroarchitectured conductive nanosheets with uniform thickness, ordered mesoporous pores, high specific surface area, and good electronic conductivity are reported by a synchronous co-assembly method of soft and hard templates. The resultant heteroarchitectured nanosheets can efficiently immobilize iodine species and constrain their shuttling effect through strong physicochemical interactions, thus endowing the corresponding zinc-iodine batteries with excellent electrochemical performance.image
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Phthalocyanine-based solid-state electrolyte for high-capacity and long-life lithium-ion batteries
    Lucente, Leah
    Lawson, Jacob
    Feld, William
    Firsich, David
    Kichambare, Padmakar
    Jenkins, Thomas
    Rodrigues, Stanley
    Scanlon, Lawrence
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2024, 28 (11N12) : 776 - 785
  • [22] High-entropy V-based cathode for high-capacity and long-life aqueous zinc-ion battery
    Ding, Xiang
    Zhu, Qiaoying
    Fan, Yong
    Yang, Yibing
    Liu, Liangwei
    Shao, Yu
    Xiao, Yi
    Wu, Chih-Hung
    Han, Lili
    NANO ENERGY, 2025, 136
  • [23] Robust VS4@rGO nanocomposite as a high-capacity and long-life cathode material for aqueous zinc-ion batteries
    Chen, Kaijian
    Li, Xing
    Zang, Jinhao
    Zhang, Zhuangfei
    Wang, Ye
    Lou, Qing
    Bai, Yucheng
    Fu, Jiatian
    Zhuang, Chenfei
    Zhang, Ying
    Zhang, Leilei
    Dai, Shuge
    Shan, Chongxin
    NANOSCALE, 2021, 13 (28) : 12370 - 12378
  • [24] Sulfur-Defect-Induced TiS1.94 as a High-Capacity and Long-Life Anode Material for Zinc-Ion Batteries
    Wang, Chunlei
    Zhao, Chunyu
    Pu, Xiangjun
    Zeng, Yubin
    Wei, Yingjin
    Cao, Yuliang
    Chen, Zhongxue
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (14) : 17637 - 17648
  • [25] 2D Tungsten Borides Induced Interfacial Modulation Engineering Toward High-Rate Performance Zinc-Iodine Battery
    Zhao, Yuwei
    Zhang, Linghai
    Zheng, Yunshan
    Xu, Huifang
    Jiang, Qingbin
    Chen, Tianyu
    Hui, Kwan San
    Hui, Kwun Nam
    Wang, Lin
    Zha, Chenyang
    SMALL, 2024, 20 (42)
  • [26] Interfacial Adsorption Layers Based on Amino Acid Analogues to Enable Dual Stabilization toward Long-Life Aqueous Zinc Iodine Batteries
    Bu, Jinshuo
    Liu, Peifen
    Ou, Genyuan
    Ye, Minghui
    Wen, Zhipeng
    Zhang, Yufei
    Tang, Yongchao
    Liu, Xiaoqing
    Li, Cheng Chao
    ADVANCED MATERIALS, 2025,
  • [27] Graphene Oxide Wrapped CuV2O6 Nanobelts as High-Capacity and Long-Life Cathode Materials of Aqueous Zinc-Ion Batteries
    Liu, Yuyi
    Li, Qian
    Ma, Kaixuan
    Yang, Gongzheng
    Wang, Chengxin
    ACS NANO, 2019, 13 (10) : 12081 - 12089
  • [28] Zn2+-storage mechanism in V6O13 with nanosheets for high-capacity and long-life aqueous zinc-metal batteries
    Chen, Lineng
    Zhang, Wenwei
    Zhang, Jianyong
    An, Qinyou
    CHEMICAL COMMUNICATIONS, 2024, 60 (46) : 5968 - 5971
  • [29] Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries
    Leyuan Zhang
    Yumin Qian
    Ruozhu Feng
    Yu Ding
    Xihong Zu
    Changkun Zhang
    Xuelin Guo
    Wei Wang
    Guihua Yu
    Nature Communications, 11
  • [30] Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries
    Zhang, Leyuan
    Qian, Yumin
    Feng, Ruozhu
    Ding, Yu
    Zu, Xihong
    Zhang, Changkun
    Guo, Xuelin
    Wang, Wei
    Yu, Guihua
    NATURE COMMUNICATIONS, 2020, 11 (01)