Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries

被引:101
|
作者
Zhang, Leyuan [1 ,2 ]
Qian, Yumin [1 ,2 ]
Feng, Ruozhu [3 ]
Ding, Yu [1 ,2 ]
Zu, Xihong [1 ,2 ]
Zhang, Changkun [1 ,2 ]
Guo, Xuelin [1 ,2 ]
Wang, Wei [3 ]
Yu, Guihua [1 ,2 ]
机构
[1] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Mech Engn, Austin, TX 78712 USA
[3] Pacific Northwest Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
关键词
ENERGY-STORAGE; AZO-COMPOUNDS; FAST-CHARGE; ELECTROLYTES; DENSITY; REDUCTION; CATHOLYTE; PROSPECTS; PROGRESS; ANOLYTE;
D O I
10.1038/s41467-020-17662-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Redox-active organic molecules have drawn extensive interests in redox flow batteries (RFBs) as promising active materials, but employing them in nonaqueous systems is far limited in terms of useable capacity and cycling stability. Here we introduce azobenzene-based organic compounds as new active materials to realize high-performance nonaqueous RFBs with long cycling life and high capacity. It is capable to achieve a stable long cycling with a low capacity decay of 0.014% per cycle and 0.16% per day over 1000 cycles. The stable cycling under a high concentration of 1M is also realized, delivering a high reversible capacity of similar to 46 Ah L-1. The unique lithium-coupled redox chemistry accompanied with a voltage increase is observed and revealed by experimental characterization and theoretical simulation. With the reversible redox activity of azo group in -conjugated structures, azobenzene-based molecules represent a class of promising redox-active organics for potential grid-scale energy storage systems.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Reversible redox chemistry in azobenzene-based organic molecules for high-capacity and long-life nonaqueous redox flow batteries
    Leyuan Zhang
    Yumin Qian
    Ruozhu Feng
    Yu Ding
    Xihong Zu
    Changkun Zhang
    Xuelin Guo
    Wei Wang
    Guihua Yu
    Nature Communications, 11
  • [2] Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries
    Zhang, Changkun
    Niu, Zhihui
    Peng, Sangshan
    Ding, Yu
    Zhang, Leyuan
    Guo, Xuelin
    Zhao, Yu
    Yu, Guihua
    ADVANCED MATERIALS, 2019, 31 (24)
  • [3] Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries
    Zu, Xihong
    Zhang, Leyuan
    Qian, Yumin
    Zhang, Changkun
    Yu, Guihua
    Advanced Materials, 2020, 132 (49) : 22347 - 22354
  • [4] Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries
    Zu, Xihong
    Zhang, Leyuan
    Qian, Yumin
    Zhang, Changkun
    Yu, Guihua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (49) : 22163 - 22170
  • [5] Azobenzene-Based Low-Potential Anolyte for Nonaqueous Organic Redox Flow Batteries
    Wang, Xiao
    Chai, Jingchao
    Lashgari, Amir
    Jiang, Jianbing Jimmy
    CHEMELECTROCHEM, 2021, 8 (01) : 83 - 89
  • [6] Reversible Redox Chemistry in Pyrrolidinium-Based TEMPO Radical and Extended Viologen for High-Voltage and Long-Life Aqueous Redox Flow Batteries
    Pan, Mingguang
    Gao, Liuzhou
    Liang, Junchuan
    Zhang, Pengbo
    Lu, Shuyu
    Lu, Yan
    Ma, Jing
    Jin, Zhong
    ADVANCED ENERGY MATERIALS, 2022, 12 (13)
  • [7] Comparing calendar and cycle life stability of redox active organic molecules for nonaqueous redox flow batteries
    Zhang, Jingjing
    Huang, Jinhua
    Robertson, Lily A.
    Shkrob, Ilya A.
    Zhang, Lu
    JOURNAL OF POWER SOURCES, 2018, 397 : 214 - 222
  • [8] Molecular engineering the naphthalimide compounds as High-Capacity anolyte for nonaqueous redox flow batteries
    Xu, Donghan
    Zhang, Cuijuan
    Li, Yongdan
    CHEMICAL ENGINEERING JOURNAL, 2022, 439
  • [9] High-capacity polysulfide-polyiodide nonaqueous redox flow batteries with a ceramic membrane
    Chen, Mao
    Chen, Hongning
    NANOSCALE ADVANCES, 2023, 5 (02): : 435 - 442
  • [10] A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
    Hollas, Aaron
    Wei, Xiaoliang
    Murugesan, Vijayakumar
    Nie, Zimin
    Li, Bin
    Reed, David
    Liu, Jun
    Sprenkle, Vincent
    Wang, Wei
    NATURE ENERGY, 2018, 3 (06): : 508 - 514