Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering

被引:13
|
作者
Ketabat, Farinaz [1 ]
Maris, Titouan [1 ,2 ]
Duan, Xiaoman [1 ]
Yazdanpanah, Zahra [1 ]
Kelly, Michael E. [1 ,3 ]
Badea, Ildiko [4 ]
Chen, Xiongbiao [1 ,5 ]
机构
[1] Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK, Canada
[2] Inst Catholique Arts & Metiers ICAM Site Toulouse, Toulouse, France
[3] Univ Saskatchewan, Coll Med, Dept Surg, Saskatoon, SK, Canada
[4] Univ Saskatchewan, Coll Pharm & Nutr, Saskatoon, SK, Canada
[5] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
three-dimensional (3D) printing; cardiac tissue engineering; printability; alginate; gelatin; fiber orientation; SUBSTRATE STIFFNESS; ENDOTHELIAL-CELLS; GELATIN HYDROGELS; STEM-CELLS; PHASE; ORIENTATION; FABRICATION; POLYETHYLENEIMINE; CARDIOMYOBLASTS; CARDIOMYOCYTES;
D O I
10.3389/fbioe.2023.1161804
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering.Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit.Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups.Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation.Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
    Wang, Pengju
    Sun, Yazhou
    Shi, Xiaoquan
    Shen, Huixing
    Ning, Haohao
    Liu, Haitao
    BIO-DESIGN AND MANUFACTURING, 2021, 4 (02) : 344 - 378
  • [32] Biodegradable Scaffolds for Urethra Tissue Engineering Based on 3D Printing
    Xu, Yifan
    Meng, Qinghua
    Jin, Xin
    Liu, Feng
    Yu, Jianjun
    ACS APPLIED BIO MATERIALS, 2020, 3 (04): : 2007 - 2016
  • [33] 3D printing biodegradable scaffolds with chitosan materials for tissue engineering
    Bardakova, K. N.
    Demina, T. S.
    Grebenik, E. A.
    Minaev, N. V.
    Akopova, T. A.
    Bagratashvili, V. N.
    Timashev, P. S.
    THIRD INTERNATIONAL YOUTH SCIENTIFIC FORUM WITH INTERNATIONAL PARTICIPATION NEW MATERIALS, 2018, 347
  • [34] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Leukers, B
    Gülkan, H
    Irsen, SH
    Milz, S
    Tille, C
    Schieker, M
    Seitz, H
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2005, 16 (12) : 1121 - 1124
  • [35] 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
    Pengju Wang
    Yazhou Sun
    Xiaoquan Shi
    Huixing Shen
    Haohao Ning
    Haitao Liu
    Bio-Design and Manufacturing, 2021, 4 : 344 - 378
  • [36] 3D printing of HA / PCL composite tissue engineering scaffolds
    Jiao Z.
    Luo B.
    Xiang S.
    Ma H.
    Yu Y.
    Yang W.
    Advanced Industrial and Engineering Polymer Research, 2019, 2 (04): : 196 - 202
  • [37] 3D-PRINTING OF GELATIN BASED SCAFFOLDS FOR TISSUE REGENERATION: PROCESSING AND CHARACTERIZATION
    Uskokovic, Petar
    Jovanovic, Marija
    Petrovic, Milos
    Stojanovic, Dusica
    Radojevic, Vesna
    TISSUE ENGINEERING PART A, 2022, 28 : S387 - S388
  • [38] 3D Printing of Mechanically Resistant Poly (Glycerol Sebacate) (PGS)-Zein Scaffolds for Potential Cardiac Tissue Engineering Applications
    Ruther, Florian
    Roether, Judith A.
    Boccaccini, Aldo R.
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (09)
  • [39] 3D Bioplotting of Gelatin/Alginate Scaffolds for Tissue Engineering:Influence of Crosslinking Degree and Pore Architecture on Physicochemical Properties
    Ting Pan
    Wenjing Song
    Xiaodong Cao
    Yingjun Wang
    JournalofMaterialsScience&Technology, 2016, 32 (09) : 889 - 900
  • [40] Fabrication and application of 3D printed Gelatin/oxidized alginate-based cryogels scaffolds for bone tissue engineering
    Moazzam, Muhammad
    Shehzad, Ahmer
    Sultanova, Dana
    Mukasheva, Fariza
    Trifonov, Alexander
    Berillo, Dmitriy
    Akilbekova, Dana
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)