Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering

被引:13
|
作者
Ketabat, Farinaz [1 ]
Maris, Titouan [1 ,2 ]
Duan, Xiaoman [1 ]
Yazdanpanah, Zahra [1 ]
Kelly, Michael E. [1 ,3 ]
Badea, Ildiko [4 ]
Chen, Xiongbiao [1 ,5 ]
机构
[1] Univ Saskatchewan, Div Biomed Engn, Saskatoon, SK, Canada
[2] Inst Catholique Arts & Metiers ICAM Site Toulouse, Toulouse, France
[3] Univ Saskatchewan, Coll Med, Dept Surg, Saskatoon, SK, Canada
[4] Univ Saskatchewan, Coll Pharm & Nutr, Saskatoon, SK, Canada
[5] Univ Saskatchewan, Dept Mech Engn, Saskatoon, SK, Canada
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
three-dimensional (3D) printing; cardiac tissue engineering; printability; alginate; gelatin; fiber orientation; SUBSTRATE STIFFNESS; ENDOTHELIAL-CELLS; GELATIN HYDROGELS; STEM-CELLS; PHASE; ORIENTATION; FABRICATION; POLYETHYLENEIMINE; CARDIOMYOBLASTS; CARDIOMYOCYTES;
D O I
10.3389/fbioe.2023.1161804
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering.Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit.Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups.Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation.Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] 3D-PRINTING OF PLGA/ALGINATE COMPOSITE SCAFFOLDS FOR CARTILAGE TISSUE ENGINEERING
    Dastidar, Anushree Ghosh
    Manda, Krishna
    Clarke, Susan
    Buchanan, Fraser
    TISSUE ENGINEERING PART A, 2022, 28 : S528 - S529
  • [22] 3D Printing of Cytocompatible Graphene/Alginate Scaffolds for Mimetic Tissue Constructs
    Li, Jianfeng
    Liu, Xiao
    Crook, Jeremy M.
    Wallace, Gordon G.
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2020, 8
  • [23] Gelatin Methacryloyl/Sodium Alginate/Cellulose Nanocrystal Inks and 3D Printing for Dental Tissue Engineering Applications
    Li, Huihua
    Chen, Shangsi
    Dissanayaka, Waruna Lakmal
    Wang, Min
    ACS OMEGA, 2024, 9 (49): : 48361 - 48373
  • [24] In vitro characterization of chitosan-gelatin scaffolds for tissue engineering
    Huang, Y
    Onyeri, S
    Siewe, M
    Moshfeghian, A
    Madihally, SV
    BIOMATERIALS, 2005, 26 (36) : 7616 - 7627
  • [25] Development of Biocomposite Alginate-Cuttlebone-Gelatin 3D Printing Inks Designed for Scaffolds with Bone Regeneration Potential
    Curti, Filis
    Serafim, Andrada
    Olaret, Elena
    Dinescu, Sorina
    Samoila, Iuliana
    Vasile, Bogdan Stefan
    Iovu, Horia
    Lungu, Adriana
    Stancu, Izabela Cristina
    Marinescu, Rodica
    MARINE DRUGS, 2022, 20 (11)
  • [26] Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing
    Barbara Leukers
    Hülya Gülkan
    Stephan H. Irsen
    Stefan Milz
    Carsten Tille
    Matthias Schieker
    Hermann Seitz
    Journal of Materials Science: Materials in Medicine, 2005, 16 : 1121 - 1124
  • [27] Characterization approach on the extrusion process of bioceramics for the 3D printing of bone tissue engineering scaffolds
    Zhong, Gaoyan
    Vaezi, Mohammad
    Liu, Ping
    Pan, Lin
    Yang, Shoufeng
    CERAMICS INTERNATIONAL, 2017, 43 (16) : 13860 - 13868
  • [28] Development, 3D Printing and Characterization of Calcium Sulfate Based Scaffolds for Bone Tissue Engineering
    Aldemir, Betul
    Dikici, Serkan
    Karaman, Ozan
    Oflaz, Hakan
    2015 19TH NATIONAL BIOMEDICAL ENGINEERING MEETING (BIYOMUT), 2015,
  • [29] 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
    Pengju Wang
    Yazhou Sun
    Xiaoquan Shi
    Huixing Shen
    Haohao Ning
    Haitao Liu
    Bio-Design and Manufacturing , 2021, (02) : 344 - 378
  • [30] 3D printing of tissue engineering scaffolds: a focus on vascular regeneration
    Pengju Wang
    Yazhou Sun
    Xiaoquan Shi
    Huixing Shen
    Haohao Ning
    Haitao Liu
    Bio-Design and Manufacturing, 2021, 4 (02) : 344 - 378