Hyperbolic angles in Lorentzian length spaces and timelike curvature bounds

被引:6
|
作者
Beran, Tobias [1 ]
Saemann, Clemens [1 ,2 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Oxford, Math Inst, Oxford, England
基金
奥地利科学基金会;
关键词
METRIC-MEASURE-SPACES; SPACETIMES; GEOMETRY; THEOREM;
D O I
10.1112/jlms.12726
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Within the synthetic-geometric framework of Lorentzian (pre-)length spaces developed in Kunzinger and Samann (Ann. Glob. Anal. Geom. 54 (2018), no. 3, 399-447) we introduce a notion of a hyperbolic angle, an angle between timelike curves and related concepts such as timelike tangent cone and exponential map. This provides valuable technical tools for the further development of the theory and paves the way for the main result of the article, which is the characterization of timelike curvature bounds (defined via triangle comparison) with an angle monotonicity condition. Further, we improve on a geodesic non-branching result for spaces with timelike curvature bounded below.
引用
收藏
页码:1823 / 1880
页数:58
相关论文
共 50 条
  • [1] Comparison theorems for Lorentzian length spaces with lower timelike curvature bounds
    Barrera, Waldemar
    Montes de Oca, Luis
    Solis, Didier A.
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (09)
  • [2] Comparison theorems for Lorentzian length spaces with lower timelike curvature bounds
    Waldemar Barrera
    Luis Montes de Oca
    Didier A. Solis
    General Relativity and Gravitation, 2022, 54
  • [3] On curvature bounds in Lorentzian length spaces
    Beran, Tobias
    Kunzinger, Michael
    Rott, Felix
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2024, 110 (02):
  • [4] The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature
    Tobias Beran
    Argam Ohanyan
    Felix Rott
    Didier A. Solis
    Letters in Mathematical Physics, 113
  • [5] The splitting theorem for globally hyperbolic Lorentzian length spaces with non-negative timelike curvature
    Beran, Tobias
    Ohanyan, Argam
    Rott, Felix
    Solis, Didier A.
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (02)
  • [6] Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications
    Cavalletti, Fabio
    Mondino, Andrea
    CAMBRIDGE JOURNAL OF MATHEMATICS, 2024, 12 (02) : 417 - 534
  • [7] A review of Lorentzian synthetic theory of timelike Ricci curvature bounds
    Cavalletti, Fabio
    Mondino, Andrea
    GENERAL RELATIVITY AND GRAVITATION, 2022, 54 (11)
  • [8] A review of Lorentzian synthetic theory of timelike Ricci curvature bounds
    Fabio Cavalletti
    Andrea Mondino
    General Relativity and Gravitation, 2022, 54
  • [9] Rényi's entropy on Lorentzian spaces. Timelike curvature-dimension conditions
    Braun, Mathias
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 177 : 46 - 128
  • [10] Lorentzian length spaces
    Michael Kunzinger
    Clemens Sämann
    Annals of Global Analysis and Geometry, 2018, 54 : 399 - 447