Progress of Commercial Technologies for Producing Syngas and Hydrogen from Hydrocarbon Gases

被引:1
|
作者
Makaryan, I. A. [1 ]
Sedov, I. V. [1 ]
机构
[1] Russian Acad Sci, Fed Res Ctr Problems Chem Phys & Med Chem, Chernogolovka 142432, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
natural gas; syngas; hydrogen; commercial technologies; flowsheet; world markets; PARTIAL OXIDATION; SOOT FORMATION; NATURAL-GAS; METHANE; CATALYST; STATE;
D O I
10.1134/S1070427223060010
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Commercial processes for conversion of carbon-containing gases to syngas and hydrogen are considered. The techno-economic characteristics of the main hydrocarbon gas conversion processes (steam methane reforming, partial oxidation, autothermal reforming) used by world's leading chemical and petrochemical companies and implemented on the commercial or semicommercial scale are presented. The characteristics of these processes are analyzed. The processes of steam conversion, autothermal reforming, and partial oxidation of methane have specific predominant application fields depending on the feed composition and requirements to the composition of the syngas obtained. The steam conversion can ensure the maximal H2/CO molar ratio in the syngas obtained, and the processes of autothermal reforming and partial oxidation of methane do not require external heat supply to the reactor and are simple in implementation. Analysis of the syngas market shows that the main drivers of its progress can be the need for alternative resources and the stable demand of the chemical industry.
引用
收藏
页码:619 / 642
页数:24
相关论文
共 50 条
  • [21] From feathers to syngas - Technologies and devices
    Dudynski, Marek
    Kwiatkowski, Kamil
    Bajer, Konrad
    WASTE MANAGEMENT, 2012, 32 (04) : 685 - 691
  • [22] Progress and development of syngas fermentation processes toward commercial bioethanol production
    Owoade, Ademola
    Alshami, Ali S.
    Levin, David
    Onaizi, Sagheer
    Malaibari, Zuhair O.
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2023, 17 (05): : 1328 - 1342
  • [23] Hydrogen Production by Thermal Plasma Pyrolysis of Hydrocarbon Gases
    Messerle, Vladimir E. E.
    Ustimenko, Alexandr B. B.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2024, 52 (04) : 1188 - 1192
  • [24] Progress in Hydrogen Production and Storage Technologies
    Hacker, Viktor
    Nestl, Stephan
    Friedrich, Theo
    PROCEEDINGS OF THE TWENTY FOURTH CONFERENCE ON THE DOMESTIC USE OF ENERGY, 2016, : 192 - 196
  • [25] Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges
    Toledo, Mario
    Arriagada, Andres
    Ripoll, Nicolas
    Salgansky, Eugene A.
    Mujeebu, Muhammad Abdul
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 177
  • [26] ACCELERATED METHOD OF CHOOSING SELECTIVE ABSORBENTS FOR EXTRACTION OF HYDROGEN SULFIDE FROM HYDROCARBON GASES
    Ganizheva, L. L.
    Ponomarenko, D. B.
    Borisova, T. Yu.
    CHEMICAL AND PETROLEUM ENGINEERING, 2011, 46 (11-12) : 722 - 725
  • [27] THE REMOVAL OF ACETYLENE FROM HYDROCARBON GASES
    BOWEN, BEV
    HOWLETT, J
    WOOD, WL
    JOURNAL OF THE SOCIETY OF CHEMICAL INDUSTRY-LONDON, 1950, 69 (03): : 65 - 69
  • [28] Gases from cracking hydrocarbon oils
    Egloff, G
    Morrell, JC
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1934, 26 : 940 - 944
  • [29] DETERMINATION OF HYDROGEN SULFIDE IN POLYSULFIDE-CONTAINING HYDROCARBON GASES
    GARBALINSKII, VA
    INDUSTRIAL LABORATORY, 1959, 25 (06): : 706 - 707
  • [30] Hydrogen and hydrocarbon gases in crystalline rock: Implications for the deep biosphere
    Lollar, BS
    Ward, J
    Slater, G
    Lacrampe-Couloume, G
    Hall, J
    Lin, LH
    Moser, D
    Onstott, TC
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (15A) : A706 - A706