Progress and development of syngas fermentation processes toward commercial bioethanol production

被引:14
|
作者
Owoade, Ademola [1 ]
Alshami, Ali S. [1 ]
Levin, David [2 ]
Onaizi, Sagheer [3 ]
Malaibari, Zuhair O. [3 ]
机构
[1] Univ North Dakota, Chem Engn Dept, Grand Forks, ND 58202 USA
[2] Univ Manitoba, Biosyst Engn Dept, Winnipeg, MB, Canada
[3] King Fahd Univ Petr & Minerals, Chem Engn Dept, Dhahran, Saudi Arabia
来源
关键词
bioethanol; syngas; fermentation; gas-liquid mass transfer; medium design; CLOSTRIDIUM-CARBOXIDIVORANS P7; HOLLOW-FIBER MEMBRANE; LIQUID MASS-TRANSFER; ENHANCED ETHANOL-PRODUCTION; CARBON-MONOXIDE; SYNTHESIS GAS; BIOFILM REACTOR; TRANSFER COEFFICIENT; MICROBIAL-PRODUCTION; BIOMASS SYNGAS;
D O I
10.1002/bbb.2481
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Syngas is created through the thermochemical conversion of biomass using gasification or pyrolysis and from CO-rich off-gases obtained from industries such as steel mills. The Wood-Ljungdahl metabolic pathway, or one of its variations, is used by acetogenic bacteria to convert syngas components (CO, H-2, and CO2) to alcohols and other compounds. Many factors affect how well syngas is fermented, including the bacteria species used, syngas composition, medium components, bioreactor type, operational parameters used and the gas-liquid mass transfer rate. These parameters impact carbon and electron flow in the bacteria, influencing the distribution, concentration and metabolic end-product yield, which determines process feasibility. This article focuses on gas composition, microorganisms, gas-liquid mass transfer fermentation strategies, medium design and commercialization activities to develop the syngas fermentation processes.
引用
收藏
页码:1328 / 1342
页数:15
相关论文
共 50 条
  • [1] A review of conversion processes for bioethanol production with a focus on syngas fermentation
    Devarapalli, Mamatha
    Atiyeh, Hasan K.
    BIOFUEL RESEARCH JOURNAL-BRJ, 2015, 2 (03): : 268 - 280
  • [2] Review of syngas fermentation processes for bioethanol
    Acharya, Bimal
    Roy, Poritosh
    Dutta, Animesh
    BIOFUELS-UK, 2014, 5 (05): : 551 - 564
  • [3] Bioethanol production from biomass: carbohydrate vs syngas fermentation
    Kennes, David
    Nalakath Abubackar, Haris
    Diaz, Mario
    Veiga, Maria C.
    Kennes, Christian
    JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2016, 91 (02) : 304 - 317
  • [4] Use of magnetic nanoparticles to enhance bioethanol production in syngas fermentation
    Kim, Young-Kee
    Lee, Haryeong
    BIORESOURCE TECHNOLOGY, 2016, 204 : 139 - 144
  • [5] Artificial Neural Network Modeling of Bioethanol Production Via Syngas Fermentation
    Sahar Safarian
    Seyed Mohammad Ebrahimi Saryazdi
    Runar Unnthorsson
    Christiaan Richter
    Biophysical Economics and Sustainability, 2021, 6 (1)
  • [6] Enhancement of bioethanol production in syngas fermentation with Clostridium ljungdahlii using nanoparticles
    Kim, Young-Kee
    Park, So Eun
    Lee, Haryeong
    Yun, Ji Young
    BIORESOURCE TECHNOLOGY, 2014, 159 : 446 - 450
  • [7] Bioethanol Production via Herbaceous and Agricultural Biomass Gasification Integrated with Syngas Fermentation
    Safarian, Sahar
    Unnthorsson, Runar
    Richter, Christiaan
    FERMENTATION-BASEL, 2021, 7 (03):
  • [8] Hydrogen-rich syngas fermentation for bioethanol production using Sacharomyces cerevisiea
    Monir, Minhaj Uddin
    Abd Aziz, Azrina
    Yousuf, Abu
    Alam, Md Zahangir
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (36) : 18241 - 18249
  • [9] Commercial Biomass Syngas Fermentation
    Daniell, James
    Koepke, Michael
    Simpson, Sean Dennis
    ENERGIES, 2012, 5 (12) : 5372 - 5417
  • [10] Keys for Bioethanol Production Processes by Fermentation and Ionic Liquid Extraction
    Perez de los Rios, Antonia
    Jose Hernandez-Fernandez, Francisco
    Zapata Henriquez, Patricio Alfredo
    Missoun, Fatiha
    Hernandez-Fernandez, Jesus
    Ortiz-Martinez, Victor
    Jose Salar-Garcia, Maria
    Lozano Blanco, Luis Javier
    Godinez, Carlos
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (08): : 6986 - 6993