Anatomy of parameter-estimation biases in overlapping gravitational-wave signals

被引:5
|
作者
Wang, Ziming [1 ,2 ]
Liang, Dicong [2 ]
Zhao, Junjie [3 ,4 ]
Liu, Chang [1 ,2 ,5 ]
Shao, Lijing [2 ,6 ]
机构
[1] Peking Univ, Sch Phys, Dept Astron, Beijing 100871, Peoples R China
[2] Peking Univ, Kavli Inst Astron & Astrophys, Beijing 100871, Peoples R China
[3] Beijing Normal Univ, Inst Frontiers Astron & Astrophys, Beijing 102206, Peoples R China
[4] Beijing Normal Univ, Dept Astron, Beijing 100875, Peoples R China
[5] Univ Toulouse, UPS, Lab Infinis Toulouse L2IT IN2P3 2, F-31062 Toulouse 9, France
[6] Chinese Acad Sci, Natl Astron Observ, Beijing 100012, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
gravitational waves; data analysis; parameter estimation; Bayesian statistics; Fisher matrix; BAYESIAN-INFERENCE; SPACE;
D O I
10.1088/1361-6382/ad210b
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In future gravitational-wave (GW) detections, a large number of overlapping GW signals will appear in the data stream of detectors. When extracting information from one signal, the presence of other signals can cause large parameter estimation biases. Using the Fisher matrix (FM), we develop a bias analysis procedure to investigate how each parameter of other signals affects the inference biases. Taking two-signal overlapping as an example, we show detailedly and quantitatively that the biases essentially originate from the overlapping of the frequency evolution. Furthermore, we find that the behaviors of the correlation coefficients between the parameters of the two signals are similar to the biases. Both of them can be used as characterization of the influence between signals. We also corroborate the bias results of the FM method with full Bayesian analysis. Our results can provide guidance for the development of new parameter estimation algorithms on overlapping signals, and the analysis methodology has the potential to generalize.
引用
收藏
页数:34
相关论文
共 50 条
  • [21] Multiband gravitational-wave parameter estimation: A study of future detectors
    Grimm, Stefan
    Harms, Jan
    PHYSICAL REVIEW D, 2020, 102 (02)
  • [22] Inadequacies of the Fisher information matrix in gravitational-wave parameter estimation
    Rodriguez, Carl L.
    Farr, Benjamin
    Farr, Will M.
    Mandel, Ilya
    PHYSICAL REVIEW D, 2013, 88 (08):
  • [23] PARAMETER-ESTIMATION OF CHIRP SIGNALS
    DJURIC, PM
    KAY, SM
    IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1990, 38 (12): : 2118 - 2126
  • [24] Accelerated Bayesian model-selection and parameter-estimation in continuous gravitational-wave searches with pulsar-timing arrays
    Taylor, Stephen
    Ellis, Justin
    Gair, Jonathan
    PHYSICAL REVIEW D, 2014, 90 (10):
  • [25] Computational techniques for parameter estimation of gravitational wave signals
    Meyer, Renate
    Edwards, Matthew C.
    Maturana-Russel, Patricio
    Christensen, Nelson
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (01)
  • [26] Electromagnetic counterparts of gravitational-wave signals
    Nuttall L.K.
    Berry C.P.L.
    Astronomy and Geophysics, 2021, 62 (04): : 415 - 421
  • [27] Electromagnetic counterparts of gravitational-wave signals
    Nuttall, Laura K.
    Berry, Christopher P. L.
    ASTRONOMY & GEOPHYSICS, 2021, 62 (04)
  • [28] Improving gravitational-wave parameter estimation using Gaussian process regression
    Moore, Christopher J.
    Berry, Christopher P. L.
    Chua, Alvin J. K.
    Gair, Jonathan R.
    PHYSICAL REVIEW D, 2016, 93 (06)
  • [29] Measurable parameter combinations of environmentally-dephased EMRI gravitational-wave signals
    Rivera, Marco Immanuel B.
    Reyes, Reinabelle C.
    NEW ASTRONOMY, 2024, 112
  • [30] Separation of the gravitational-wave signals and the solar oscillation signals
    Ni, WT
    Xu, XH
    GRAVITATIONAL WAVES, 2000, 523 : 459 - 460