Exact Large-Scale Fluctuations of the Phase Field in the Sine-Gordon Model

被引:5
|
作者
Del Vecchio, Giuseppe Del Vecchio [1 ]
Kormos, Marton [2 ,3 ]
Doyon, Benjamin [1 ]
Bastianello, Alvise [4 ,5 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Quantum Dynam & Correlat Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
ISING-MODEL; STATISTICAL-MECHANICS; RENORMALIZATION-GROUP; DYNAMICS; SYSTEM; CHAIN;
D O I
10.1103/PhysRevLett.131.263401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the first exact theory and analytical formulas for the large-scale phase fluctuations in the sine-Gordon model, valid in all regimes of the field theory, for arbitrary temperatures and interaction strengths. Our result is based on the ballistic fluctuation theory combined with generalized hydrodynamics, and can be seen as an exact "dressing" of the phenomenological soliton-gas picture first introduced by Sachdev and Young [Phys. Rev. Lett. 78, 2220 (1997)], to the modes of generalized hydrodynamics. The resulting physics of phase fluctuations in the sine-Gordon model is qualitatively different, as the stable quasiparticles of integrability give coherent ballistic propagation instead of diffusive spreading. We provide extensive numerical checks of our analytical predictions within the classical regime of the field theory by using Monte Carlo methods. We discuss how our results are of ready applicability to experiments on tunnel-coupled quasicondensates.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Exact expectation values of local fields in the quantum sine-Gordon model
    Lukyanov, S
    Zamolodchikov, A
    NUCLEAR PHYSICS B, 1997, 493 (03) : 571 - 587
  • [32] Exact entanglement entropy of the XYZ model and its sine-Gordon limit
    Ercolessi, Elisa
    Evangelisti, Stefano
    Ravanini, Francesco
    PHYSICS LETTERS A, 2010, 374 (21) : 2101 - 2105
  • [33] DYNAMICS OF SINE-GORDON SOLITONS UNDER RANDOM PERTURBATIONS - MULTIPLICATIVE LARGE-SCALE WHITE NOISE
    PETRUCCIONE, F
    BILLER, P
    PHYSICAL REVIEW B, 1990, 41 (04): : 2145 - 2149
  • [34] Exact expectation values of local fields in the quantum sine-Gordon model
    Lukyanov, S.
    Zamolodchikov, A.
    Nuclear Physics, Section B, 493 (03):
  • [35] Exact results for thermodynamics of the classical field theories: Sine-Gordon and sinh-Gordon models
    Papa, E
    Tsvelik, AM
    PHYSICAL REVIEW B, 1999, 60 (18): : 12752 - 12757
  • [36] MAXIMUM AND COUPLING OF THE SINE-GORDON FIELD
    Bauerschmidt, Roland
    Hofstetter, Michael
    ANNALS OF PROBABILITY, 2022, 50 (02): : 455 - 508
  • [37] Phase diagram of sine-Gordon system
    Shanghai Jiaotong Univ, Shanghai, China
    Wuli Xuebao, 2 (189-195):
  • [38] On the Stochastic Sine-Gordon Model: An Interacting Field Theory Approach
    Bonicelli, Alberto
    Dappiaggi, Claudio
    Rinaldi, Paolo
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (12)
  • [39] SOME EXACT-SOLUTIONS TO THE SINE-GORDON EQUATIONS
    YANG, ZJ
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1995, 34 (04) : 589 - 593
  • [40] Nonlinear topological phase transitions in the dimerized sine-Gordon model
    Ezawa, Motohiko
    PHYSICAL REVIEW B, 2022, 105 (16)