Exact Large-Scale Fluctuations of the Phase Field in the Sine-Gordon Model

被引:5
|
作者
Del Vecchio, Giuseppe Del Vecchio [1 ]
Kormos, Marton [2 ,3 ]
Doyon, Benjamin [1 ]
Bastianello, Alvise [4 ,5 ]
机构
[1] Kings Coll London, Dept Math, London WC2R 2LS, England
[2] Budapest Univ Technol & Econ, Inst Phys, Dept Theoret Phys, Muegyet Rkp 3, H-1111 Budapest, Hungary
[3] Budapest Univ Technol & Econ, MTA BME Quantum Dynam & Correlat Res Grp, Muegyet Rkp 3, H-1111 Budapest, Hungary
[4] Tech Univ Munich, TUM Sch Nat Sci, Phys Dept, D-85748 Garching, Germany
[5] Munich Ctr Quantum Sci & Technol MCQST, Schellingstr 4, D-80799 Munich, Germany
基金
英国工程与自然科学研究理事会;
关键词
ISING-MODEL; STATISTICAL-MECHANICS; RENORMALIZATION-GROUP; DYNAMICS; SYSTEM; CHAIN;
D O I
10.1103/PhysRevLett.131.263401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present the first exact theory and analytical formulas for the large-scale phase fluctuations in the sine-Gordon model, valid in all regimes of the field theory, for arbitrary temperatures and interaction strengths. Our result is based on the ballistic fluctuation theory combined with generalized hydrodynamics, and can be seen as an exact "dressing" of the phenomenological soliton-gas picture first introduced by Sachdev and Young [Phys. Rev. Lett. 78, 2220 (1997)], to the modes of generalized hydrodynamics. The resulting physics of phase fluctuations in the sine-Gordon model is qualitatively different, as the stable quasiparticles of integrability give coherent ballistic propagation instead of diffusive spreading. We provide extensive numerical checks of our analytical predictions within the classical regime of the field theory by using Monte Carlo methods. We discuss how our results are of ready applicability to experiments on tunnel-coupled quasicondensates.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Chiral sine-Gordon model
    Yanagisawa, Takashi
    EPL, 2016, 113 (04)
  • [22] Noncommutative sine-Gordon model
    Lechtenfeld, O
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (5-6): : 500 - 505
  • [23] The Dynamical Sine-Gordon Model
    Martin Hairer
    Hao Shen
    Communications in Mathematical Physics, 2016, 341 : 933 - 989
  • [24] A DISCRETE SINE-GORDON MODEL
    DING, GH
    XU, BW
    ZHANG, YM
    PHYSICS LETTERS B, 1993, 317 (1-2) : 107 - 111
  • [25] On a Parabolic Sine-Gordon Model
    Cheng, Xinyu
    Li, Dong
    Quan, Chaoyu
    Yang, Wen
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2021, 14 (04): : 1068 - 1084
  • [26] Noncommutative sine-Gordon model
    Lechtenfeld, O
    CZECHOSLOVAK JOURNAL OF PHYSICS, 2004, 54 (11) : 1351 - 1357
  • [27] THE LATTICE SINE-GORDON MODEL
    IZERGIN, AG
    KOREPIN, VE
    VESTNIK LENINGRADSKOGO UNIVERSITETA SERIYA FIZIKA KHIMIYA, 1981, (04): : 84 - 87
  • [28] The local sine-Gordon model
    Xu, BW
    Zhang, YM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (22): : 7349 - 7352
  • [29] Exact Mass-Coupling Relation for the Homogeneous Sine-Gordon Model
    Bajnok, Zoltan
    Balog, Janos
    Ito, Katsushi
    Satoh, Yuji
    Toth, Gabor Zsolt
    PHYSICAL REVIEW LETTERS, 2016, 116 (18)
  • [30] THE GRAVITATIONAL SINE-GORDON MODEL
    HSU, E
    KUTASOV, D
    NUCLEAR PHYSICS B, 1993, 396 (2-3) : 693 - 707