Multibranches of acoustic emission as identifier for deformation mechanisms in additively manufactured 316L stainless steel

被引:8
|
作者
Chen, Yan [1 ]
Gou, Boyuan [1 ]
Xu, Xin [1 ]
Ding, Xiangdong [1 ]
Sun, Jun [1 ]
Salje, Ekhard K. H. [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Mech Behav Mat, Xian 710049, Peoples R China
[2] Univ Cambridge, Dept Earth Sci, Cambridge CB2 3EQ, England
基金
中国国家自然科学基金; 欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
Multibranching; Acoustic emission; Deformation mechanism; Avalanche behavior; Additive manufacturing; TWINNING-INDUCED PLASTICITY; STACKING-FAULT ENERGIES; STRAIN-RATE SENSITIVITY; MARTENSITIC-TRANSFORMATION; DAMAGE MECHANISMS; HIGH-STRENGTH; EVOLUTION; DUCTILITY; BEHAVIOR;
D O I
10.1016/j.addma.2023.103819
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The multiple collapse mechanisms of complex materials produced by additive manufacturing (AM) were identified by measurements of the acoustic emission (AE) of the samples under tension. A perfect correlation between AE avalanches and deformation mechanisms is shown to hold in the extremely complex AM metallic materials such as 'as-built' and 'stress-relieved' AM 316L stainless steel (SS). The main criterion is that multibranches of the energy-amplitude scaling in AE proves the coexistence of several deformation mechanisms. The as-built AM 316L SS shows three branches in the energy-amplitude scaling of AE signals, which originate from dislocation movements, twinning-detwinning processes and stress-induced martensitic transformations. After stressrelieving annealing at 600 degrees C for 1 h, two branches remain visible with the dominant deformation mechanisms of dislocation movement and twinning-detwinning. The energy exponent of dislocation avalanches is epsilon = 1.6, which is not affected by the heat treatment. The twinning-detwinning exponent increases from 1.8 to 2.0 after annealing. The avalanche behavior of the martensitic transformation shows power laws with energy exponents near epsilon = 1.65 in stress-induced martensite in as-built AM 316L SS and epsilon = 1.8 for strain-induced martensite in stress-relieved AM 316L SS. This multibranching phenomenon can, thus, be used to identify the mechanisms underlying the deformation of AM-alloys and facilitates online monitoring of deformation processes.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Predicting ductile tearing of additively manufactured 316L stainless steel
    Neilsen, Michael K.
    INTERNATIONAL JOURNAL OF FRACTURE, 2019, 218 (1-2) : 195 - 207
  • [22] Predicting ductile tearing of additively manufactured 316L stainless steel
    Michael K. Neilsen
    International Journal of Fracture, 2019, 218 : 195 - 207
  • [23] The Fracture and Fragmentation Behaviour of Additively Manufactured Stainless Steel 316L
    Amott, R.
    Harris, E. J.
    Winter, R. E.
    Stirk, S. M.
    Chapman, D. J.
    Eakins, D. E.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2015, 2017, 1793
  • [24] Effect of Laser Peening on Surface Morphology and Deformation Level of Additively Manufactured 316L Stainless Steel
    Mithal, Abeer
    Maharjan, Niroj
    Idapalapati, Sridhar
    PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ADVANCED SURFACE ENHANCEMENT, INCASE 2023, 2024, : 85 - 96
  • [25] The Influence of Metastable Cellular Structure on Deformation Behavior in Laser Additively Manufactured 316L Stainless Steel
    Li, Na
    Li, Zhengyang
    Wei, Yujie
    NANOMATERIALS, 2021, 11 (11)
  • [26] Defect-associated microstructure evolution and deformation heterogeneities in additively manufactured 316L stainless steel
    Fan, Feifan
    Jiang, Mingguang
    Wang, Pei
    Liu, Changyong
    Liu, Zhiyuan
    Chen, Zhangwei
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 861
  • [27] In situ high-energy X-ray study of deformation mechanisms in additively manufactured 316L stainless steel
    Zhang, Xuan
    Kenesei, Peter
    Park, Jun-Sang
    Almer, Jonathan
    Li, Meimei
    JOURNAL OF NUCLEAR MATERIALS, 2021, 549
  • [28] Nanoindentation Hardness and Corrosion Studies of Additively Manufactured 316L Stainless Steel
    England, Jennifer
    Uddin, Mohammad J.
    Ramirez-Cedillo, Erick
    Karunarathne, Darshan
    Nasrazadani, Seifollah
    Golden, Teresa D.
    Siller, Hector R.
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2022, 31 (08) : 6795 - 6805
  • [29] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Shamsujjoha, Md.
    Agnew, Sean R.
    Fitz-Gerald, James M.
    Moore, William R.
    Newman, Tabitha A.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2018, 49A (07): : 3011 - 3027
  • [30] High Strength and Ductility of Additively Manufactured 316L Stainless Steel Explained
    Md. Shamsujjoha
    Sean R. Agnew
    James M. Fitz-Gerald
    William R. Moore
    Tabitha A. Newman
    Metallurgical and Materials Transactions A, 2018, 49 : 3011 - 3027