Effect of Laser Peening on Surface Morphology and Deformation Level of Additively Manufactured 316L Stainless Steel

被引:1
|
作者
Mithal, Abeer [1 ,2 ]
Maharjan, Niroj [2 ]
Idapalapati, Sridhar [1 ]
机构
[1] Nanyang Technol Univ, Sch Mech & Aerosp Engn, 50 Nanyang Ave, Singapore 639798, Singapore
[2] Agcy Sci Technol & Res, Adv Remfg & Technol Ctr, 3 Cleantech Loop, Singapore 637143, Singapore
关键词
Laser shock peening; Directed energy deposition; Surface enhancement; Materials characterization; EBSD; MICROSTRUCTURE; IMPACT;
D O I
10.1007/978-981-99-8643-9_10
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Laser peening (LSP) is a surface enhancement technology that utilizes a short-pulsed laser to improve the fatigue life of components. With the advent of additive manufacturing (AM), there has been an interest in studying LSP of AM parts. In this experimental work, we examine the effect of LSP on the microstructure and surface morphology of AM 316L stainless steel. LSP at moderate and extreme peak power densities of 7.86 and 17.68 GW/cm(2) respectively, was performed on a 316L steel sample fabricated by directed energy deposition (DED). The samples were characterized for their surface morphology and near-surface microstructure using a range of analytical techniques. The results indicate that all LSP conditions had no significant effect on the surface topography or oxide level. When no ablative coating was used, the surface residual stress was tensile whilst with coating the surface residual stress state was compressive. The plastic strain (as measured by EBSD) was not significantly different for all LSP conditions. The use of extremely high peak power density (17.68 GW/cm(2)) showed no significant increment in plastic strain, hardness or surface residual stress compared to moderate peak power density (7.86 GW/cm(2)) possibly due to the dielectric breakdown of water. The findings indicate that a very high peak power density does not necessarily translate to larger peening effects and may not be required for material processing.
引用
收藏
页码:85 / 96
页数:12
相关论文
共 50 条
  • [1] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Byun, Thak Sang
    Gussev, Maxim N.
    Lach, Timothy G.
    JOM, 2024, 76 (01) : 362 - 378
  • [2] Deformation and Fracture Behavior of Additively Manufactured 316L Stainless Steel
    Thak Sang Byun
    Maxim N. Gussev
    Timothy G. Lach
    JOM, 2024, 76 : 362 - 378
  • [3] A multiscale investigation of deformation heterogeneity in additively manufactured 316L stainless steel
    Chen, Ling
    Liu, Wenyang
    Song, Lijun
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2021, 820
  • [4] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Trelewicz, Jason R.
    Halada, Gary P.
    Donaldson, Olivia K.
    Manogharan, Guha
    JOM, 2016, 68 (03) : 850 - 859
  • [5] Microstructure and Corrosion Resistance of Laser Additively Manufactured 316L Stainless Steel
    Jason R. Trelewicz
    Gary P. Halada
    Olivia K. Donaldson
    Guha Manogharan
    JOM, 2016, 68 : 850 - 859
  • [6] The Influence of Metastable Cellular Structure on Deformation Behavior in Laser Additively Manufactured 316L Stainless Steel
    Li, Na
    Li, Zhengyang
    Wei, Yujie
    NANOMATERIALS, 2021, 11 (11)
  • [7] Shear deformation behavior of additively manufactured 316L stainless steel lattice structures
    Lee, Gitaek
    Jeong, Sang Guk
    Kwon, Jihye
    Ahn, Soung Yeoul
    SaGong, Man Jae
    Lee, Kee-Ahn
    Kim, Hyoung Seop
    ADDITIVE MANUFACTURING, 2024, 93
  • [8] Hetero-deformation-induced stress in additively manufactured 316L stainless steel
    Kong, Decheng
    Dong, Chaofang
    Ni, Xiaoqing
    Liang, Zhang
    Man, Cheng
    Li, Xiaogang
    MATERIALS RESEARCH LETTERS, 2020, 8 (10): : 390 - 397
  • [9] Fatigue Behavior of Additively Manufactured Stainless Steel 316L
    Avanzini, Andrea
    MATERIALS, 2023, 16 (01)
  • [10] Thermomechanical fatigue of additively manufactured 316L stainless steel
    Babinsky, T.
    Sulak, I.
    Kubena, I.
    Man, J.
    Weiser, A.
    Svabenska, E.
    Englert, L.
    Guth, S.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 869