Interatomic-Potential-Free, Data-Driven Molecular Dynamics

被引:2
|
作者
Bulin, J. [1 ]
Hamaekers, J. [1 ]
Ariza, M. P. [2 ]
Ortiz, M. [3 ,4 ]
机构
[1] Fraunhofer Inst Algorithms & Sci Comp, Schloss Birlinghoven, D-53757 St Augustin, Germany
[2] Univ Seville, Escuela Tecn Super Ingn, Seville 41092, Spain
[3] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
Data-Driven computing; Molecular dynamics; Optimal control; Game theory; Wasserstein metric; C-60; APPROXIMATION; FRAGMENTATION;
D O I
10.1016/j.cma.2023.116224
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a Data-Driven (DD) paradigm that enables molecular dynamics calculations to be performed directly from sampled force-field data such as obtained, e. g., from ab initio calculations, thereby eschewing the conventional step of modeling the data by empirical interatomic potentials entirely. The data required by the DD solvers consists of local atomic configurations and corresponding atomic forces and is, therefore, fundamental, i. e., it is not beholden to any particular model. The resulting DD solvers, including a fully explicit DD-Verlet algorithm, are provably convergent and exhibit robust convergence with respect to the data in selected test cases. We present an example of application to C60 buckminsterfullerenes that showcases the feasibility, range and scope of the DD molecular dynamics paradigm.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [11] Data-driven discovery of intrinsic dynamics
    Floryan, Daniel
    Graham, Michael D. D.
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (12) : 1113 - 1120
  • [12] Data-driven discovery of intrinsic dynamics
    Daniel Floryan
    Michael D. Graham
    [J]. Nature Machine Intelligence, 2022, 4 : 1113 - 1120
  • [13] Data-driven Begins with DATA; Potential of Data Assets
    Hannila, Hannu
    Silvola, Risto
    Harkonen, Janne
    Haapasalo, Harri
    [J]. JOURNAL OF COMPUTER INFORMATION SYSTEMS, 2022, 62 (01) : 29 - 38
  • [14] Data-driven design of molecular nanomagnets
    Duan, Yan
    Rosaleny, Lorena E.
    Coutinho, Joana T.
    Gimenez-Santamarina, Silvia
    Scheie, Allen
    Baldovi, Jose J.
    Cardona-Serra, Salvador
    Gaita-Arino, Alejandro
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [15] Data-driven design of molecular nanomagnets
    Yan Duan
    Lorena E. Rosaleny
    Joana T. Coutinho
    Silvia Giménez-Santamarina
    Allen Scheie
    José J. Baldoví
    Salvador Cardona-Serra
    Alejandro Gaita-Ariño
    [J]. Nature Communications, 13
  • [16] Sputtering from rough tungsten surfaces: Data-driven molecular dynamics simulations
    Shermukhamedov, Shokirbek
    Probst, Michael
    [J]. PHYSICS OF PLASMAS, 2023, 30 (12)
  • [17] Data-driven discovery of governing equations for fluid dynamics based on molecular simulation
    Zhang, Jun
    Ma, Wenjun
    [J]. JOURNAL OF FLUID MECHANICS, 2020, 892
  • [18] ColabFit exchange: Open-access datasets for data-driven interatomic potentials
    Vita, Joshua A.
    Fuemmeler, Eric G.
    Gupta, Amit
    Wolfe, Gregory P.
    Tao, Alexander Quanming
    Elliott, Ryan S.
    Martiniani, Stefano
    Tadmor, Ellad B.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (15):
  • [19] Simulation of recrystallization using molecular dynamics; Effects of the interatomic potential
    Godiksen, Rasmus B.
    Trautt, Zachary T.
    Upmanyu, Moneesh
    Schidt, Soren
    Jensen, Dorte Juul
    [J]. RECRYSTALLIZATION AND GRAIN GROWTH III, PTS 1 AND 2, 2007, 558-559 : 1081 - +
  • [20] Data-Driven Free-Fall Prediction
    不详
    [J]. IEEE CONTROL SYSTEMS MAGAZINE, 2023, 43 (05): : 31 - 31