Interatomic-Potential-Free, Data-Driven Molecular Dynamics

被引:2
|
作者
Bulin, J. [1 ]
Hamaekers, J. [1 ]
Ariza, M. P. [2 ]
Ortiz, M. [3 ,4 ]
机构
[1] Fraunhofer Inst Algorithms & Sci Comp, Schloss Birlinghoven, D-53757 St Augustin, Germany
[2] Univ Seville, Escuela Tecn Super Ingn, Seville 41092, Spain
[3] Univ Bonn, Hausdorff Ctr Math, Endenicher Allee 60, D-53115 Bonn, Germany
[4] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
Data-Driven computing; Molecular dynamics; Optimal control; Game theory; Wasserstein metric; C-60; APPROXIMATION; FRAGMENTATION;
D O I
10.1016/j.cma.2023.116224
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a Data-Driven (DD) paradigm that enables molecular dynamics calculations to be performed directly from sampled force-field data such as obtained, e. g., from ab initio calculations, thereby eschewing the conventional step of modeling the data by empirical interatomic potentials entirely. The data required by the DD solvers consists of local atomic configurations and corresponding atomic forces and is, therefore, fundamental, i. e., it is not beholden to any particular model. The resulting DD solvers, including a fully explicit DD-Verlet algorithm, are provably convergent and exhibit robust convergence with respect to the data in selected test cases. We present an example of application to C60 buckminsterfullerenes that showcases the feasibility, range and scope of the DD molecular dynamics paradigm.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Data-Driven Molecular Dynamics: A Multifaceted Challenge
    Bernetti, Mattia
    Bertazzo, Martina
    Masetti, Matteo
    [J]. PHARMACEUTICALS, 2020, 13 (09) : 1 - 26
  • [2] Hyperactive learning for data-driven interatomic potentials
    Cas van der Oord
    Matthias Sachs
    Dávid Péter Kovács
    Christoph Ortner
    Gábor Csányi
    [J]. npj Computational Materials, 9
  • [3] Hyperactive learning for data-driven interatomic potentials
    van der Oord, Cas
    Sachs, Matthias
    Kovacs, David Peter
    Ortner, Christoph
    Csanyi, Gabor
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [4] A data-driven method for optimization of classical interatomic potentials
    Jasperson, Benjamin A.
    Johnson, Harley T.
    [J]. MRS ADVANCES, 2024, 9 (11) : 863 - 869
  • [5] A data-driven peridynamic continuum model for upscaling molecular dynamics
    You, Huaiqian
    Yu, Yue
    Silling, Stewart
    D'Elia, Marta
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
  • [6] A 'magnetic' interatomic potential for molecular dynamics simulations
    Dudarev, SL
    Derlet, PM
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2005, 17 (44) : 7097 - 7118
  • [7] Data-driven computing in dynamics
    Kirchdoerfer, T.
    Ortiz, M.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 113 (11) : 1697 - 1710
  • [8] Data-driven discovery of quasiperiodically driven dynamics
    Das, Suddhasattwa
    Mustavee, Shakib
    Agarwal, Shaurya
    [J]. NONLINEAR DYNAMICS, 2024,
  • [9] Data-Driven Development of Lipid Force Fields for Molecular Dynamics Simulations
    Antila, Hanne S.
    Miettinen, Markus S.
    [J]. BIOPHYSICAL JOURNAL, 2020, 118 (03) : 141A - 142A
  • [10] An interatomic potential for aluminum arsenide: A molecular dynamics study
    Rino, Jose Pedro
    Tsuzuki, Helio
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (02) : 270 - 275