A data-driven method for optimization of classical interatomic potentials

被引:0
|
作者
Jasperson, Benjamin A. [1 ]
Johnson, Harley T. [1 ,2 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, 104 South Goodwin Ave,MC-230, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1557/s43580-024-00802-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Training an interatomic potential (IP) to predict material properties requires appropriate experimental or first principles, e.g. density functional theory (DFT), ground truth values, along with an efficient optimization algorithm to select parameter values. Atomistic simulations are required to check each proposed parameter set, which can be costly depending on the desired property. We present an optimization algorithm that leverages existing model parameter data with a dual neural network approach to accelerate the fitting process. We extract model parameters from OpenKIM and identify correlations between them and select material properties. We then create a surrogate model and couple it with an optimization algorithm to determine the desired IP parameters. This information can be leveraged, along with DFT training data and additional atomistic simulations, to further optimize the parameters. We believe this framework can be used to expedite the optimization process and enable better models for large scale properties.
引用
收藏
页码:863 / 869
页数:7
相关论文
共 50 条
  • [1] Hyperactive learning for data-driven interatomic potentials
    Cas van der Oord
    Matthias Sachs
    Dávid Péter Kovács
    Christoph Ortner
    Gábor Csányi
    [J]. npj Computational Materials, 9
  • [2] Hyperactive learning for data-driven interatomic potentials
    van der Oord, Cas
    Sachs, Matthias
    Kovacs, David Peter
    Ortner, Christoph
    Csanyi, Gabor
    [J]. NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [3] ColabFit exchange: Open-access datasets for data-driven interatomic potentials
    Vita, Joshua A.
    Fuemmeler, Eric G.
    Gupta, Amit
    Wolfe, Gregory P.
    Tao, Alexander Quanming
    Elliott, Ryan S.
    Martiniani, Stefano
    Tadmor, Ellad B.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (15):
  • [4] A data-driven method for pipeline scheduling optimization
    Liao, Qi
    Zhang, Haoran
    Xia, Tianqi
    Chen, Quanjun
    Li, Zhengbing
    Liang, Yongtu
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2019, 144 : 79 - 94
  • [5] New Potentials for Data-Driven Intelligent Tutoring System Development and Optimization
    Koedinger, Kenneth R.
    Brunskill, Emma
    Baker, Ryan S. J. D.
    McLaughlin, Elizabeth A.
    Stamper, John
    [J]. AI MAGAZINE, 2013, 34 (03) : 27 - 41
  • [6] A Performance and Data-Driven Method for Optimization of Traditional Courtyards
    Xu, Zhixin
    Huang, Xia
    Zheng, Xin
    Deng, Ji-Yu
    Sun, Bo
    [J]. SUSTAINABILITY, 2024, 16 (13)
  • [7] DATA-DRIVEN NONSMOOTH OPTIMIZATION
    Banert, Sebastian
    Ringh, Axel
    Adler, Jonas
    Karlsson, Johan
    Oktem, Ozan
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (01) : 102 - 131
  • [8] Interatomic-Potential-Free, Data-Driven Molecular Dynamics
    Bulin, J.
    Hamaekers, J.
    Ariza, M. P.
    Ortiz, M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 415
  • [9] Data-driven optimization in management
    Consigli, Giorgio
    Kleywegt, Anton
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2019, 16 (03) : 371 - 374
  • [10] Data-driven optimization in management
    Giorgio Consigli
    Anton Kleywegt
    [J]. Computational Management Science, 2019, 16 : 371 - 374