A data-driven method for optimization of classical interatomic potentials

被引:0
|
作者
Jasperson, Benjamin A. [1 ]
Johnson, Harley T. [1 ,2 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, 1206 W Green St, Urbana, IL 61801 USA
[2] Univ Illinois, Mat Res Lab, 104 South Goodwin Ave,MC-230, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1557/s43580-024-00802-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Training an interatomic potential (IP) to predict material properties requires appropriate experimental or first principles, e.g. density functional theory (DFT), ground truth values, along with an efficient optimization algorithm to select parameter values. Atomistic simulations are required to check each proposed parameter set, which can be costly depending on the desired property. We present an optimization algorithm that leverages existing model parameter data with a dual neural network approach to accelerate the fitting process. We extract model parameters from OpenKIM and identify correlations between them and select material properties. We then create a surrogate model and couple it with an optimization algorithm to determine the desired IP parameters. This information can be leveraged, along with DFT training data and additional atomistic simulations, to further optimize the parameters. We believe this framework can be used to expedite the optimization process and enable better models for large scale properties.
引用
收藏
页码:863 / 869
页数:7
相关论文
共 50 条
  • [21] Data-driven optimization model customization
    Hewitt, Mike
    Frejinger, Emma
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2020, 287 (02) : 438 - 451
  • [22] Optimization for Data-Driven Learning and Control
    Khan, Usman A.
    Bajwa, Waheed U.
    Nedic, Angelia
    Rabbat, Michael G.
    Sayed, Ali H.
    [J]. PROCEEDINGS OF THE IEEE, 2020, 108 (11) : 1863 - 1868
  • [23] On Regularization Schemes for Data-Driven Optimization
    Ni, Wei
    Jiang, Zhong-Ping
    [J]. PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 3016 - 3023
  • [24] A data-driven detection optimization framework
    Schwartz, William Robson
    Cunha de Melo, Victor Hugo
    Pedrini, Helio
    Davis, Larry S.
    [J]. NEUROCOMPUTING, 2013, 104 : 35 - 49
  • [25] An Improved Data-Driven Modeling Method for Aircraft Based on Prediction and Optimization
    Su, Shihong
    Xiao, Bing
    Li, Lingwei
    Luo, Jinfeng
    Zhao, Hui
    [J]. 2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 2560 - 2565
  • [26] Reactive Power Optimization of Distribution Network Based on Data-driven Method
    Cai C.
    Cheng Z.
    Zhang G.
    Li Y.
    Chu Y.
    [J]. Dianwang Jishu/Power System Technology, 2024, 48 (01): : 373 - 382
  • [27] A Data-Driven Approach to Constraint Optimization
    Wikarek, Jaroslaw
    Sitek, Pawel
    [J]. AUTOMATION 2019: PROGRESS IN AUTOMATION, ROBOTICS AND MEASUREMENT TECHNIQUES, 2020, 920 : 135 - 144
  • [28] Data-driven cellular capacity optimization
    Egbert, Robert
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [29] A Data-driven Convex-optimization Method for Estimating Load Changes
    Al-Digs, Abdullah
    Chen, Bo
    Dhople, Sairaj, V
    Chen, Yu Christine
    [J]. 2019 7TH IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (IEEE GLOBALSIP), 2019,
  • [30] Data-driven shape-topology optimization method for curved shells
    Gao T.
    Tian K.
    Huang L.
    Zhang S.
    Li Z.
    [J]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45 (02):