Spatiotemporal dynamic graph convolutional network for traffic speed forecasting

被引:7
|
作者
Yin, Xiang [1 ]
Zhang, Wenyu [1 ]
Zhang, Shuai [1 ]
机构
[1] Zhejiang Univ Finance & Econ, Sch Informat Management & Artificial Intelligence, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
Traffic speed forecasting; Dynamic graph; Fusion strategy; Graph convolutional network; Spatiotemporal forecasting; FLOW PREDICTION; NEURAL-NETWORKS;
D O I
10.1016/j.ins.2023.119056
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate traffic speed forecasting is challenging because of complex spatiotemporal correlations of traffic data. Some studies have recognized that correlations among sensors change gradually and have constructed dynamic graphs to reflect this change. However, they ignored the temporal dependencies among dynamic graphs, resulting in an inability to capture the deep dynamic dependencies among sensors. Few studies have explored the hybrid interaction patterns of static and dynamic graphs, hindering the adequate exploration of spatial dependencies. Therefore, a novel deep learning model is proposed in this study to address these problems and produce accurate traffic speed forecasting. First, a new graph generation method is proposed to capture the deep dynamic dependencies among sensors, which exploits historical information of dynamic graphs to develop temporal dependencies among dynamic graphs. Then, a new fusion strategy is proposed to investigate the hybrid interaction patterns of static and dynamic graphs, which effectively mines hidden information in graphs to fully extract spatial dependencies. Finally, a new spatiotemporal network architecture is proposed, which unifies the proposed graph generation method and fusion strategy into a consistent framework and yields the final forecasting results. Experimental results on two real-world traffic datasets indicate that the proposed model outperforms state-of-the-art models.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Traffic Graph Convolutional Network for Dynamic Urban Travel Speed Estimation
    Huan Ngo
    Sabyasachee Mishra
    Networks and Spatial Economics, 2023, 23 : 179 - 222
  • [22] Semantics-Aware Dynamic Graph Convolutional Network for Traffic Flow Forecasting
    Liang, Guojun
    Kintak, U.
    Ning, Xin
    Tiwari, Prayag
    Nowaczyk, Slawomir
    Kumar, Neeraj
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (06) : 7796 - 7809
  • [23] DAGCRN: Graph convolutional recurrent network for traffic forecasting with dynamic adjacency matrix
    Shi, Zheng
    Zhang, Yingjun
    Wang, Jingping
    Qin, Jiahu
    Liu, Xiaoqian
    Yin, Hui
    Huang, Hua
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 227
  • [24] AST-GCN: Attribute-Augmented Spatiotemporal Graph Convolutional Network for Traffic Forecasting
    Zhu, Jiawei
    Wang, Qiongjie
    Tao, Chao
    Deng, Hanhan
    Zhao, Ling
    Li, Haifeng
    IEEE ACCESS, 2021, 9 : 35973 - 35983
  • [25] BLRGCN: A dynamic traffic flow prediction model based on spatiotemporal graph convolutional network
    Shi, Qiuhao
    Xu, Xiaolong
    Liu, Xuanyan
    2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 844 - 851
  • [26] Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting
    Bai, Lei
    Yao, Lina
    Li, Can
    Wang, Xianzhi
    Wang, Can
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [27] Spatiotemporal interactive dynamic adaptive adversarial graph convolution network for traffic flow forecasting
    Zhang, Hong
    Chen, Linbiao
    Cao, Jie
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2024, 12 (01)
  • [28] A Two-Stream Graph Convolutional Neural Network for Dynamic Traffic Flow Forecasting
    Li, Zhaoyang
    Li, Lin
    Peng, Yuquan
    Tao, Xiaohui
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 355 - 362
  • [29] Multi-scale fusion dynamic graph convolutional recurrent network for traffic forecasting
    Junbi Xiao
    Wenjing Zhang
    Wenchao Weng
    Yuhao Zhou
    Yunhuan Cong
    Cluster Computing, 2025, 28 (3)
  • [30] Spatial-Temporal Dynamic Graph Convolutional Network With Interactive Learning for Traffic Forecasting
    Liu, Aoyu
    Zhang, Yaying
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, 25 (07) : 7645 - 7660